15,902 research outputs found
Nickel electrode plate thickening study
The rate of thickening of the nickel electrode with cycling, under geochronous conditions, was investigated. The experimental procedures used to study the effects of various operational parameters on the rate of the thickness growth are outlined. The parameters included temperature, electrolyte composition, manufacturing lot, cycle parameters, and reconditioning methods
Proving the correctness of the flight director program EADIFD, volume 1
EADIFD is written in symbolic assembly language for execution on the C4000 airborne computer. It is a subprogram of an aircraft navigation and guidance program and is used to generate pitch and roll command signals for use in terminal airspace. The proof of EADIFD was carried out by an inductive assertion method consisting of two parts, a verification condition generator and a source language independent proof checker. With the specifications provided by NASA, EADIFD was proved correct. The termination of the program is guaranteed and the program contains no instructions that can modify it under any conditions
Measurements of total scattering spectra from bocaccio (Sebastes paucispinis)
Marine sportfishing in southern California is a huge industry with annual revenues totaling many billions of dollars. However, the stocks of lingcod and six rockfish species have been declared overfished by the Pacific Fisheries Management Council. As part of a multifaceted fisheries management plan, marine conservation areas, covering many million square nautical miles, have been
mandated. To monitor the recovery of the rockfish stocks in these areas, scientists are faced with the following
challenges: 1) multiple species of rockfish exist in these areas; 2) the species reside near or on the bottom at depths of 80 to 300 m; and 3) they are low in numerical density. To meet these challenges, multifrequency
echosounders, multibeam sonar, and cameras mounted on remotely operated vehicles are frequently used (Reynolds et al., 2001). The accuracy and precision of these echosounder
results are largely dependent upon the accuracy of the species classification and target strength estimation
(MacLennan and Simmonds, 1992)
On the Key-Uncertainty of Quantum Ciphers and the Computational Security of One-way Quantum Transmission
We consider the scenario where Alice wants to send a secret (classical)
-bit message to Bob using a classical key, and where only one-way
transmission from Alice to Bob is possible. In this case, quantum communication
cannot help to obtain perfect secrecy with key length smaller then . We
study the question of whether there might still be fundamental differences
between the case where quantum as opposed to classical communication is used.
In this direction, we show that there exist ciphers with perfect security
producing quantum ciphertext where, even if an adversary knows the plaintext
and applies an optimal measurement on the ciphertext, his Shannon uncertainty
about the key used is almost maximal. This is in contrast to the classical case
where the adversary always learns bits of information on the key in a known
plaintext attack. We also show that there is a limit to how different the
classical and quantum cases can be: the most probable key, given matching
plain- and ciphertexts, has the same probability in both the quantum and the
classical cases. We suggest an application of our results in the case where
only a short secret key is available and the message is much longer.Comment: 19 pages, 2 figures. This is a revised version of an earlier version
that appeared in the proc. of Eucrocrypt'04:LNCS3027, 200
Assessing reservoir operations risk under climate change
Risk-based planning offers a robust way to identify strategies that permit adaptive water resources management under climate change. This paper presents a flexible methodology for conducting climate change risk assessments involving reservoir operations. Decision makers can apply this methodology to their systems by selecting future periods and risk metrics relevant to their planning questions and by collectively evaluating system impacts relative to an ensemble of climate projection scenarios (weighted or not). This paper shows multiple applications of this methodology in a case study involving California\u27s Central Valley Project and State Water Project systems. Multiple applications were conducted to show how choices made in conducting the risk assessment, choices known as analytical design decisions, can affect assessed risk. Specifically, risk was reanalyzed for every choice combination of two design decisions: (1) whether to assume climate change will influence flood-control constraints on water supply operations (and how), and (2) whether to weight climate change scenarios (and how). Results show that assessed risk would motivate different planning pathways depending on decision-maker attitudes toward risk (e.g., risk neutral versus risk averse). Results also show that assessed risk at a given risk attitude is sensitive to the analytical design choices listed above, with the choice of whether to adjust flood-control rules under climate change having considerably more influence than the choice on whether to weight climate scenarios
A I-V analysis of irradiated Gallium Arsenide solar cells
A computer program was used to analyze the illuminated I-V characteristics of four sets of gallium arsenide (GaAs) solar cells irradiated with 1-MeV electrons and 10-MeV protons. It was concluded that junction regions (J sub r) dominate nearly all GaAs cells tested, except for irradiated Mitsubishi cells, which appear to have a different doping profile. Irradiation maintains or increases the dominance by J sub r. Proton irradiation increases J sub r more than does electron irradiation. The U.S. cells were optimized for beginning of life (BOL) and the Japanese for end of life (EOL). I-V analysis indicates ways of improving both the BOL and EOL performance of GaAs solar cells
Magnetic nanowires as permanent magnet materials
We present the fabrication of metallic magnetic nanowires using a low
temperature chemical process. We show that pressed powders and magnetically
oriented samples exhibit a very high coercivity (6.5 kOe at 140 K and 4.8 kOe
at 300 K). We discuss the magnetic properties of these metamaterials and show
that they have the suitable properties to realize "high temperature magnets"
competitive with AlNiCo or SmCo permanent magnets. They could also be used as
recording media for high density magnetic recording.Comment: 5 pages, 5 figure
- …
