9,328 research outputs found
Correlated measurements of UHF radar signatures, RF radiation and electric field changes from lightning
During Storm Hazards - 82, simultaneous measurements are made of radar echoes, fast and slow field changes and RF radiation from lightning. Radio frequency radiation and radar echoes are also obtained during periods when the research aircraft is struck by lightning. These data are presently used to better understand the electrical processes which occur during strikes to the aircraft. Preliminary conclusions verify that the events recorded aboard the aircraft occurred during lightning but also indicate that they occur with surprising frequency very early in the flash
Are There Topological Black Hole Solitons in String Theory?
We point out that the celebrated Hawking effect of quantum instability of
black holes seems to be related to a nonperturbative effect in string theory.
Studying quantum dynamics of strings in the gravitational background of black
holes we find classical instability due to emission of massless string
excitations. The topology of a black hole seems to play a fundamental role in
developing the string theory classical instability due to the effect of sigma
model instantons. We argue that string theory allows for a qualitative
description of black holes with very small masses and it predicts topological
solitons with quantized spectrum of masses. These solitons would not decay into
string massless excitations but could be pair created and may annihilate also.
Semiclassical mass quantization of topological solitons in string theory is
based on the argument showing existence of nontrivial zeros of beta function of
the renormalization group.Comment: 12 pages, TeX, requires phyzzx.tex, published in Gen. Rel. Grav. 19
(1987) 1173; comment added on December 18, 199
Endotaxial Si nanolines in Si(001):H
We present a detailed study of the structural and electronic properties of a
self-assembled silicon nanoline embedded in the H-terminated silicon (001)
surface, known as the Haiku stripe. The nanoline is a perfectly straight and
defect free endotaxial structure of huge aspect ratio; it can grow micrometre
long at a constant width of exactly four Si dimers (1.54nm). Another remarkable
property is its capacity to be exposed to air without suffering any
degradation. The nanoline grows independently of any step edges at tunable
densities, from isolated nanolines to a dense array of nanolines. In addition
to these unique structural characteristics, scanning tunnelling microscopy and
density functional theory reveal a one-dimensional state confined along the
Haiku core. This nanoline is a promising candidate for the long sought after
electronic solid-state one-dimensional model system to explore the fascinating
quantum properties emerging in such reduced dimensionality.Comment: 8 pages, 6 figure
One dimensional Si-in-Si(001) template for single-atom wire growth
Single atom metallic wires of arbitrary length are of immense technological
and scientific interest. We describe a novel silicon-only template enabling the
self-organised growth of isolated micrometer long surface and subsurface
single-atom chains. It consists of a one dimensional, defect-free
reconstruction - the Haiku core, here revealed for the first time in details -
self-assembled on hydrogenated Si(001) terraces, independent of any step edges.
We discuss the potential of this Si-in-Si template as an appealing alternative
to vicinal surfaces for nanoscale patterning.Comment: 3 pages, 2 figure
Evaluation of aesthetic integration between composite restorations and natural tooth in NCCL: a case report
NCCL (non carious cervical lesion) is defined as irreversible loss of dental hard tissue that does not involve bacteria. It consists of erosion, attrition, abrasion and abfraction that rarely occur alone. Dentinal hypersensitivity is an early symptom of NCCL. Preventive measures and restorative treatment can avoid the progress of NCCL. This paper reports a case of NCCL treatment with aesthetic purpose. The aesthetic evaluation was made by means of spectrophotometry as a standardized method. Spectrophotometric measurements such as International Commission on Illumination (CIE-Commission Internationale de l’Eclaraige) CIE L* a* b* and ΔE between the sound enamel and resin restoration, provide all the information about the outcome of the aesthetic restorative treatment
3D global simulations of a cosmic-ray-driven dynamo in dwarf galaxies
Star-forming dwarf galaxies can be seen as the local proxies of the
high-redshift building blocks of more massive galaxies according to the current
paradigm of the hierarchical galaxy formation. They are low-mass objects, and
therefore their rotation speed is very low. Several galaxies are observed to
show quite strong magnetic fields. These cases of strong ordered magnetic
fields seem to correlate with a high, but not extremely high, star formation
rate. We investigate whether these magnetic fields could be generated by the
cosmic-ray-driven dynamo. The environment of a dwarf galaxy is unfavourable for
the large-scale dynamo action because of the very slow rotation that is
required to create the regular component of the magnetic field. We built a 3D
global model of a dwarf galaxy that consists of two gravitational components:
the stars and the dark-matter halo described by the purely phenomenological
profile proposed previously. We solved a system of magnetohydrodynamic (MHD)
equations that include an additional cosmic-ray component described by the
fluid approximation. We found that the cosmic-ray-driven dynamo can amplify the
magnetic field with an exponential growth rate. The -folding time is
correlated with the initial rotation speed. The final mean value of the
azimuthal flux for our models is of the order of few G and the system
reaches its equipartition level. The results indicate that the
cosmic-ray-driven dynamo is a process that can explain the magnetic fields in
dwarf galaxies.Comment: 6 pages, 4 figures, accepted for publication in A&
Molecular-beam epitaxy of CrSi_2 on Si(111)
Chromium disilicide layers have been grown on Si(111) in a commercial molecular‐beam epitaxy machine. Thin layers (10 nm) exhibit two epitaxial relationships, which have been identified as CrSi_2(0001)//Si(111) with CrSi_2[1010]//Si[101], and CrSi_2(0001)//Si(111) with CrSi_2[1120]//Si[101]. The latter case represents a 30° rotation of the CrSi_2 layer about the Si surface normal relative to the former case. Thick (210 nm) layers were grown by four different techniques, and the best‐quality layer was obtained by codeposition of Cr and Si at an elevated temperature. These layers are not single crystal; the largest grains are observed in a layer grown at 825 °C and are 1–2 μm across
String theory extensions of Einstein-Maxwell fields: the static case
We present a new approach for generation of solutions in the four-dimensional
heterotic string theory with one vector field and in the five-dimensional
bosonic string theory starting from the static Einstein-Maxwell fields. Our
approach allows one to construct the solution classes invariant with respect to
the total subgroup of the three-dimensional charging symmetries of these string
theories. The new generation procedure leads to the extremal
Israel-Wilson-Perjes subclass of string theory solutions in a special case and
provides its natural continuous extension to the realm of non-extremal
solutions. We explicitly calculate all string theory solutions related to
three-dimensional gravity coupled to an effective dilaton field which arises
after an appropriate charging symmetry invariant reduction of the static
Einstein-Maxwell system.Comment: 19 pages in late
- …
