8,868 research outputs found

    Friends and Symptom Dimensions in Patients with Psychosis: A Pooled Analysis

    Get PDF
    PMCID: PMC3503760This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Spectrometric study of condensed phase species of thorium and palladium-based modifiers in a complex matrix for electrothermal atomic absorption spectrometry

    Get PDF
    The chemical and morphological transformations of condensed phase species of a thorium-based modifier were studied over the temperature range 200–2500 °C, without and with the presence of aluminium and silicon as matrix components, and in some instances, arsenic as an analyte element. A similar study was also conducted with palladium as the modifier, for comparison. Results were derived using scanning electron microscopy (SEM), energy dispersive (ED) X-ray spectrometry, Raman microanalysis and attenuated total reflectance (ATR) Fourier transform-infrared (FT-IR) spectrometry. Comparable results were found using pyrolytic and non-pyrolytic graphite platforms, with processes occurring at slightly higher temperatures on the pyrolytic graphite platform. With thorium as the modifier, metal oxides were the predominant species on the platform surface at relatively low temperatures (<1500 °C), whereas metal phases became prevalent at high temperatures, when thorium and aluminium tended to behave independently from one other. Some spatial variations in the composition of the salt residues on different regions of the platform were observed (from the region closest to the slot in the tube, to the region furthest from the slot). Nonetheless, thorium metal remained on the graphite platform to higher temperatures than did aluminium metal. In the presence of arsenic, the existence of mixtures of thorium and arsenic oxides, just before the appearance temperature of gas phase arsenic atoms, was confirmed by SEM studies, ED X-ray spectra and Raman microanalysis. This suggests that any modifying effect of thorium on arsenic occurs while the modifier is in the oxide phase rather than in the metal phase. The presence of silicon added as silica, did not influence significantly the thermochemical behaviour of mixtures of thorium and aluminium. However, coexistence of silicon and arsenic oxides at the appearance temperature of the atomic absorption signal of arsenic was obtained, confirming that silicon can act as an internal modifier for arsenic. In the presence of palladium, aluminium exhibited greater interaction with the modifier; consequently, aluminium metal was retained on the platform surface to higher temperatures than thorium, which could explain how interference effects of aluminium on e.g. arsenic are avoided or reduced. Similarly, there was evidence for interaction of palladium and arsenic in the reduced state. However, when aluminium and silicon were present, the transformation of the palladium oxide to the metallic state was affected, which could diminish the modifying benefits of palladium for arsenic in the presence of aluminium

    The relaxation of OH (v = 1) and OD (v = 1) by H2O and D2O at temperatures from 251 to 390 K

    Get PDF
    We report rate coefficients for the relaxation of OH(v = 1) and OD(v = 1) by H2O and D2O as a function of temperature between 251 and 390 K. All four rate coefficients exhibit a negative dependence on temperature. In Arrhenius form, the rate coefficients for relaxation (in units of 10–12 cm3 molecule–1 s–1) can be expressed as: for OH(v = 1) + H2O between 263 and 390 K: k = (2.4 ± 0.9) exp((460 ± 115)/T); for OH(v = 1) + D2O between 256 and 371 K: k = (0.49 ± 0.16) exp((610 ± 90)/T); for OD(v = 1) + H2O between 251 and 371 K: k = (0.92 ± 0.16) exp((485 ± 48)/T); for OD(v = 1) + D2O between 253 and 366 K: k = (2.57 ± 0.09) exp((342 ± 10)/T). Rate coefficients at (297 ± 1 K) are also reported for the relaxation of OH(v = 2) by D2O and the relaxation of OD(v = 2) by H2O and D2O. The results are discussed in terms of a mechanism involving the formation of hydrogen-bonded complexes in which intramolecular vibrational energy redistribution can occur at rates competitive with re-dissociation to the initial collision partners in their original vibrational states. New ab initio calculations on the H2O–HO system have been performed which, inter alia, yield vibrational frequencies for all four complexes: H2O–HO, D2O–HO, H2O–DO and D2O–DO. These data are then employed, adapting a formalism due to Troe (J. Troe, J. Chem. Phys., 1977, 66, 4758), in order to estimate the rates of intramolecular energy transfer from the OH (OD) vibration to other modes in the complexes in order to explain the measured relaxation rates—assuming that relaxation proceeds via the hydrogen-bonded complexes

    Activation of MAPK signalling results in resistance to saracatinib (AZD0530) in ovarian cancer

    Get PDF
    SRC tyrosine kinase is frequently overexpressed and activated in late-stage, poor prognosis ovarian tumours, and preclinical studies have supported the use of targeted SRC inhibitors in the treatment of this disease. The SAPPROC trial investigated the addition of the SRC inhibitor saracatinib (AZD0530) to weekly paclitaxel for the treatment of platinum resistant ovarian cancer; however, this drug combination did not provide any benefit to progression free survival (PFS) of women with platinum resistant disease. In this study we aimed to identify mechanisms of resistance to SRC inhibitors in ovarian cancer cells. Using two complementary strategies; a targeted tumour suppressor gene siRNA screen, and a phospho-receptor tyrosine kinase array, we demonstrate that activation of MAPK signalling, via a reduction in NF1 (neurofibromin) expression or overexpression of HER2 and the insulin receptor, can drive resistance to AZD0530. Knockdown of NF1 in two ovarian cancer cell lines resulted in resistance to AZD0530, and was accompanied with activated MEK and ERK signalling. We also show that silencing of HER2 and the insulin receptor can partially resensitize AZD0530 resistant cells, which was associated with decreased phosphorylation of MEK and ERK. Furthermore, we demonstrate a synergistic effect of combining SRC and MEK inhibitors in both AZD0530 sensitive and resistant cells, and that MEK inhibition is sufficient to completely resensitize AZD0530 resistant cells. This work provides a preclinical rationale for the combination of SRC and MEK inhibitors in the treatment of ovarian cancer, and also highlights the need for biomarker driven patient selection for clinical trials

    CA19-9 as a Potential Target for Radiolabeled Antibody-Based Positron Emission Tomography of Pancreas Cancer.

    Get PDF
    Introduction. Sensitive and specific imaging of pancreas cancer are necessary for accurate diagnosis, staging, and treatment. The vast majority of pancreas cancers express the carbohydrate tumor antigen CA19-9. The goal of this study was to determine the potential to target CA19-9 with a radiolabeled anti-CA19-9 antibody for imaging pancreas cancer. Methods. CA19-9 was quantified using flow cytometry on human pancreas cancer cell lines. An intact murine anti-CA19-9 monoclonal antibody was labeled with a positron emitting radionuclide (Iodine-124) and injected into mice harboring antigen positive and negative xenografts. MicroPET/CT were performed at successive time intervals (72 hours, 96 hours, 120 hours) after injection. Radioactivity was measured in blood and tumor to provide objective confirmation of the images. Results. Antigen expression by flow cytometry revealed approximately 1.3 × 10(6) CA19-9 antigens for the positive cell line and no expression in the negative cell line. Pancreas xenograft imaging with Iodine-124-labeled anti-CA19-9 mAb demonstrated an average tumor to blood ratio of 5 and positive to negative tumor ratio of 20. Conclusion. We show in vivo targeting of our antigen positive xenograft with a radiolabeled anti-CA19-9 antibody. These data demonstrate the potential to achieve anti-CA19-9 antibody based positron emission tomography of pancreas cancer
    corecore