806 research outputs found
Ocean services user needs assessment. Volume 1: Survey results, conclusions and recommendations
An interpretation of environmental information needs of marine users, derived from a direct contact survey of eight important sectors of the marine user community is presented. Findings of the survey and results and recommendations are reported. The findings consist of specific and quantized measurement and derived product needs for each sector and comparisons of these needs with current and planned NOAA data and services. The following supportive and reference material are examined: direct contact interviews with industry members, analyses of current NOAA data gathering and derived product capabilities, evaluations of new and emerging domestic and foreign satellite data gathering capabilities, and a special commercial fishing survey conducted by the Jet Propulsion Laboratory (JPL)
Operations management system
The objective of an operations management system is to provide an orderly and efficient method to operate and maintain aerospace vehicles. Concepts are described for an operations management system and the key technologies are highlighted which will be required if this capability is brought to fruition. Without this automation and decision aiding capability, the growing complexity of avionics will result in an unmanageable workload for the operator, ultimately threatening mission success or survivability of the aircraft or space system. The key technologies include expert system application to operational tasks such as replanning, equipment diagnostics and checkout, global system management, and advanced man machine interfaces. The economical development of operations management systems, which are largely software, will require advancements in other technological areas such as software engineering and computer hardware
Laserlight visual cueing device for freezing of gait in Parkinson's disease: a case study of the biomechanics involved
AbstractBackground: Freezing of gait (FOG) is a serious gait disorder affecting up to two-thirds of people with Parkinson's disease (PD). Cueing has been explored as a method of generating motor execution using visual transverse lines on the floor. However, the impact of a laser light visual cue remains unclear. Objective: To determine the biomechanical effect of a laser cane on FOG in a participant with PD compared to a healthy age- and gender-matched control. Methods: The participant with PD and healthy control were given a task of initiating gait from standing. Electromyography (EMG) data were collected from the tibialis anterior (TA) and the medial gastrocnemius (GS) muscles using an 8-channel system. A 10-camera system (Qualisys) recorded movement in 6 degrees of freedom and a calibrated anatomical system technique was used to construct a full body model. Center of mass (COM) and center of pressure (COP) were the main outcome measures. Results: The uncued condition showed that separation of COM and COP took longer and was of smaller magnitude than the cued condition. EMG activity revealed prolonged activation of GS, with little to no TA activity. The cued condition showed earlier COM and COP separation. There was reduced fluctuation in GS, with abnormal, early bursts of TA activity. Step length improved in the cued condition compared to the uncued condition. Conclusion: Laserlight visual cueing improved step length beyond a non-cued condition for this patient indicating improved posture and muscle control
Origin of the butterfly magnetoresistance in a Dirac nodal-line system
We report a study on the magnetotransport properties and on the Fermi
surfaces (FS) of the ZrSi(Se,Te) semimetals. Density Functional Theory (DFT)
calculations, in absence of spin orbit coupling (SOC), reveal that both the Se
and the Te compounds display Dirac nodal lines (DNL) close to the Fermi level
at symmorphic and non-symmorphic positions, respectively. We
find that the geometry of their FSs agrees well with DFT predictions. ZrSiSe
displays low residual resistivities, pronounced magnetoresistivity, high
carrier mobilities, and a butterfly-like angle-dependent magnetoresistivity
(AMR), although its DNL is not protected against gap opening. As in
CdAs, its transport lifetime is found to be 10 to 10 times
larger than its quantum one. ZrSiTe, which possesses a protected DNL, displays
conventional transport properties. Our evaluation indicates that both compounds
most likely are topologically trivial. Nearly angle-independent effective
masses with strong angle dependent quantum lifetimes lead to the butterfly AMR
in ZrSiSe
Hypervelocity Impact Performance of 3D Printed Aluminum Panels
With the continued development of additive manufacturing methods, control over the shape of ligaments, cell regularity, and macroscopic shape can all be easily tuned. This capability allows for tailoring of component architecture and promotes potential mass savings in a space vehicle structure. Additionally, it allows one the flexibility of combining structural elements such as MMOD protection and vehicle stiffness for launch loads for an overall mass reduction. At NASA JSC this technology is being explored in many different ways with the goal being a multifunctional structural component. For this study, four different types of aluminum panels have been 3D printed for testing, three being of a body centric cubic (BCC) lattice structure core and one being kelvin cell structure core. All samples have a 5.33 cm (0.05) nominally thick aluminum face sheet printed on the front and back side of each panel, with all core materials having a 5.08 cm (2.0) nominal thickness (see Table 1 for test sample summary and Figures 1 2 for sample illustrations). These tests will evaluate the performance of 3D printed aluminum panels under hypervelocity impact (HVI) conditions. The hypervelocity impact tests are being conducted at the JSC White Sands Test Facility (WSTF) Remote Hypervelocity Test Laboratory (RHTL), located in Las Cruces, New Mexico. All tests will be conducted with a 3.4mm Al 2017-T4 sphere at 6.8 km/s impacting at 0 to surface normal (i.e., impacting with no obliquity). Each sample will be trapped between two metal frames, with gasket material residing between the sample and frame, which will be the shipping and testing configuration for all tests. There will be an Al 2017-T4 witness plate staged 5.08 cm (2.0) from each sample to capture signature of debris, if the rear face sheet of the sample were to perforate from the HVI test event
Lifeworld Inc. : and what to do about it
Can we detect changes in the way that the world turns up as they turn up? This paper makes such an attempt. The first part of the paper argues that a wide-ranging change is occurring in the ontological preconditions of Euro-American cultures, based in reworking what and how an event is produced. Driven by the security – entertainment complex, the aim is to mass produce phenomenological encounter: Lifeworld Inc as I call it. Swimming in a sea of data, such an aim requires the construction of just enough authenticity over and over again. In the second part of the paper, I go on to argue that this new world requires a different kind of social science, one that is experimental in its orientation—just as Lifeworld Inc is—but with a mission to provoke awareness in untoward ways in order to produce new means of association. Only thus, or so I argue, can social science add to the world we are now beginning to live in
- …
