6,604 research outputs found

    Sparse Image Reconstruction for the SPIDER Optical Interferometric Telescope

    Full text link
    The concept of a recently proposed small-scale interferometric optical imaging device, an instrument known as the Segmented Planar Imaging Detector for Electro-optical Reconnaissance (SPIDER), is of great interest for its possible applications in astronomy and space science. Due to low weight, low power consumption, and high resolution, the SPIDER telescope could replace the large space telescopes that exist today. Unlike traditional optical interferometry the SPIDER accurately retrieves both phase and amplitude information, making the measurement process analogous to a radio interferometer. State of the art sparse radio interferometric image reconstruction techniques have been gaining traction in radio astronomy and reconstruct accurate images of the radio sky. In this work we describe algorithms from radio interferometric imaging and sparse image reconstruction and demonstrate their application to the SPIDER concept telescope through simulated observation and reconstruction of the optical sky. Such algorithms are important for providing high fidelity images from SPIDER observations, helping to power the SPIDER concept for scientific and astronomical analysis.Comment: 4 Pages, 2 Figures, 1 Tabl

    Detecting dark energy with wavelets on the sphere

    Full text link
    Dark energy dominates the energy density of our Universe, yet we know very little about its nature and origin. Although strong evidence in support of dark energy is provided by the cosmic microwave background, the relic radiation of the Big Bang, in conjunction with either observations of supernovae or of the large scale structure of the Universe, the verification of dark energy by independent physical phenomena is of considerable interest. We review works that, through a wavelet analysis on the sphere, independently verify the existence of dark energy by detecting the integrated Sachs-Wolfe effect. The effectiveness of a wavelet analysis on the sphere is demonstrated by the highly statistically significant detections of dark energy that are made. Moreover, the detection is used to constrain properties of dark energy. A coherent picture of dark energy is obtained, adding further support to the now well established cosmological concordance model that describes our Universe.Comment: 14 pages, 8 figures; Proceedings of Wavelets XII, SPIE Optics and Photonics 200

    On the computation of directional scale-discretized wavelet transforms on the sphere

    Get PDF
    We review scale-discretized wavelets on the sphere, which are directional and allow one to probe oriented structure in data defined on the sphere. Furthermore, scale-discretized wavelets allow in practice the exact synthesis of a signal from its wavelet coefficients. We present exact and efficient algorithms to compute the scale-discretized wavelet transform of band-limited signals on the sphere. These algorithms are implemented in the publicly available S2DW code. We release a new version of S2DW that is parallelized and contains additional code optimizations. Note that scale-discretized wavelets can be viewed as a directional generalization of needlets. Finally, we outline future improvements to the algorithms presented, which can be achieved by exploiting a new sampling theorem on the sphere developed recently by some of the authors.Comment: 13 pages, 3 figures, Proceedings of Wavelets and Sparsity XV, SPIE Optics and Photonics 2013, Code is publicly available at http://www.s2dw.org

    A fast and exact ww-stacking and ww-projection hybrid algorithm for wide-field interferometric imaging

    Get PDF
    The standard wide-field imaging technique, the ww-projection, allows correction for wide-fields of view for non-coplanar radio interferometric arrays. However, calculating exact corrections for each measurement has not been possible due to the amount of computation required at high resolution and with the large number of visibilities from current interferometers. The required accuracy and computational cost of these corrections is one of the largest unsolved challenges facing next generation radio interferometers such as the Square Kilometre Array. We show that the same calculation can be performed with a radially symmetric ww-projection kernel, where we use one dimensional adaptive quadrature to calculate the resulting Hankel transform, decreasing the computation required for kernel generation by several orders of magnitude, whilst preserving the accuracy. We confirm that the radial ww-projection kernel is accurate to approximately 1% by imaging the zero-spacing with an added ww-term. We demonstrate the potential of our radially symmetric ww-projection kernel via sparse image reconstruction, using the software package PURIFY. We develop a distributed ww-stacking and ww-projection hybrid algorithm. We apply this algorithm to individually correct for non-coplanar effects in 17.5 million visibilities over a 2525 by 2525 degree field of view MWA observation for image reconstruction. Such a level of accuracy and scalability is not possible with standard ww-projection kernel generation methods. This demonstrates that we can scale to a large number of measurements with large image sizes whilst still maintaining both speed and accuracy.Comment: 9 Figures, 19 Pages. Accepted to Ap

    PURIFY: a new approach to radio-interferometric imaging

    Get PDF
    In a recent article series, the authors have promoted convex optimization algorithms for radio-interferometric imaging in the framework of compressed sensing, which leverages sparsity regularization priors for the associated inverse problem and defines a minimization problem for image reconstruction. This approach was shown, in theory and through simulations in a simple discrete visibility setting, to have the potential to outperform significantly CLEAN and its evolutions. In this work, we leverage the versatility of convex optimization in solving minimization problems to both handle realistic continuous visibilities and offer a highly parallelizable structure paving the way to significant acceleration of the reconstruction and high-dimensional data scalability. The new algorithmic structure promoted relies on the simultaneous-direction method of multipliers (SDMM), and contrasts with the current major-minor cycle structure of CLEAN and its evolutions, which in particular cannot handle the state-of-the-art minimization problems under consideration where neither the regularization term nor the data term are differentiable functions. We release a beta version of an SDMM-based imaging software written in C and dubbed PURIFY (http://basp-group.github.io/purify/) that handles various sparsity priors, including our recent average sparsity approach SARA. We evaluate the performance of different priors through simulations in the continuous visibility setting, confirming the superiority of SARA

    On sparsity averaging

    Get PDF
    Recent developments in Carrillo et al. (2012) and Carrillo et al. (2013) introduced a novel regularization method for compressive imaging in the context of compressed sensing with coherent redundant dictionaries. The approach relies on the observation that natural images exhibit strong average sparsity over multiple coherent frames. The associated reconstruction algorithm, based on an analysis prior and a reweighted 1\ell_1 scheme, is dubbed Sparsity Averaging Reweighted Analysis (SARA). We review these advances and extend associated simulations establishing the superiority of SARA to regularization methods based on sparsity in a single frame, for a generic spread spectrum acquisition and for a Fourier acquisition of particular interest in radio astronomy.Comment: 4 pages, 3 figures, Proceedings of 10th International Conference on Sampling Theory and Applications (SampTA), Code available at https://github.com/basp-group/sopt, Full journal letter available at http://arxiv.org/abs/arXiv:1208.233
    corecore