383 research outputs found
Faraday spectroscopy of atoms confined in a dark optical trap
We demonstrate Faraday spectroscopy with high duty cycle and sampling rate
using atoms confined to a blue-detuned optical trap. Our trap consists of a
crossed pair of high-charge-number hollow laser beams, which forms a dark,
box-like potential. We have used this to measure transient magnetic fields in a
500-micron-diameter spot over a 400 ms time window with nearly unit duty cycle
at a 500 Hz sampling rate. We use these measurements to quantify and compensate
time-varying magnetic fields to ~10 nT per time sample.Comment: 6 pages, 8 figures Accepted in Phys. Rev.
Acoustic black holes in a two-dimensional "photon-fluid"
Optical field fluctuations in self-defocusing media can be described in terms
of sound waves in a 2D photon-fluid. It is shown that, while the background
fluid couples with the usual flat metric, sound-like waves experience an
effective curved spacetime determined by the physical properties of the flow.
In an optical cavity configuration, the background spacetime can be suitably
controlled by the driving beam allowing the formation of acoustic ergoregions
and event horizons. An experiment simulating the main features of the rotating
black hole geometry is proposed.Comment: revised versio
Landau levels of cold atoms in non-Abelian gauge fields
The Landau levels of cold atomic gases in non-Abelian gauge fields are
analyzed. In particular we identify effects on the energy spectrum and density
distribution which are purely due to the non-Abelian character of the fields.
We investigate in detail non-Abelian generalizations of both the Landau and the
symmetric gauge. Finally, we discuss how these non-Abelian Landau and symmetric
gauges may be generated by means of realistically feasible lasers in a tripod
scheme.Comment: 13 pages, 9 figure
Pinning and transport of cyclotron/Landau orbits by electromagnetic vortices
Electromagnetic waves with phase defects in the form of vortex lines combined
with a constant magnetic field are shown to pin down cyclotron orbits (Landau
orbits in the quantum mechanical setting) of charged particles at the location
of the vortex. This effect manifests itself in classical theory as a trapping
of trajectories and in quantum theory as a Gaussian shape of the localized wave
functions. Analytic solutions of the Lorentz equation in the classical case and
of the Schr\"odinger or Dirac equations in the quantum case are exhibited that
give precise criteria for the localization of the orbits. There is a range of
parameters where the localization is destroyed by the parametric resonance.
Pinning of orbits allows for their controlled positioning -- they can be
transported by the motion of the vortex lines.Comment: This version differs from the printed paper in having the full titles
of all referenced pape
Topological dragging of solitons
We put forward properties of solitons supported by optical lattices featuring
topological dislocations, and show that solitons experience attractive and
repulsive forces around the dislocations. Suitable arrangements of dislocations
are even found to form soliton traps, and the properties of such solitons are
shown to crucially depend on the trap topology. The uncovered phenomenon opens
a new concept for soliton control and manipulation, e.g., in disk-shaped
Bose-Einstein condensates.Comment: 15 pages, 5 figures, to appear in Physical Review Letter
Effective magnetic fields in degenerate atomic gases induced by light beams with orbital angular momenta
We investigate the influence of two resonant laser beams on the mechanical
properties of degenerate atomic gases. The control and probe beams of light are
considered to have Orbital Angular Momenta (OAM) and act on the three-level
atoms in the Electromagnetically Induced Transparency (EIT) configuration. The
theory is based on the explicit analysis of the quantum dynamics of cold atoms
coupled with two laser beams. Using the adiabatic approximation, we obtain an
effective equation of motion for the atoms driven to the dark state. The
equation contains a vector potential type interaction as well as an effective
trapping potential. The effective magnetic field is shown to be oriented along
the propagation direction of the control and probe beams containing OAM. Its
spatial profile can be controlled by choosing proper laser beams. We
demonstrate how to generate a constant effective magnetic field, as well as a
field exhibiting a radial distance dependence. The resulting effective magnetic
field can be concentrated within a region where the effective trapping
potential holds the atoms. The estimated magnetic length can be considerably
smaller than the size of the atomic cloud.Comment: 11 pages, 5 figures Corrected some mistakes in equation
Theoretical study of a cold atom beam splitter
A theoretical model is presented for the study of the dynamics of a cold
atomic cloud falling in the gravity field in the presence of two crossing
dipole guides. The cloud is split between the two branches of this laser guide,
and we compare experimental measurements of the splitting efficiency with
semiclassical simulations. We then explore the possibilities of optimization of
this beam splitter. Our numerical study also gives access to detailed
information, such as the atom temperature after the splitting
Cold atom confinement in an all-optical dark ring trap
We demonstrate confinement of Rb atoms in a dark, toroidal optical
trap. We use a spatial light modulator to convert a single blue-detuned
Gaussian laser beam to a superposition of Laguerre-Gaussian modes that forms a
ring-shaped intensity null bounded harmonically in all directions. We measure a
1/e spin-relaxation lifetime of ~1.5 seconds for a trap detuning of 4.0 nm. For
smaller detunings, a time-dependent relaxation rate is observed. We use these
relaxation rate measurements and imaging diagnostics to optimize trap alignment
in a programmable manner with the modulator. The results are compared with
numerical simulations.Comment: 5 pages, 4 figure
Slow light in degenerate Fermi gases
We investigate the effect of slow light propagating in a degenerate atomic
Fermi gas. In particular we use slow light with an orbital angular momentum. We
present a microscopic theory for the interplay between light and matter and
show how the slow light can provide an effective magnetic field acting on the
electrically neutral fermions, a direct analogy of the free electron gas in an
uniform magnetic field. As an example we illustrate how the corresponding de
Haas-van Alphen effect can be seen in a neutral gas of fermions.Comment: Slightly updated. Phys. Rev. Lett. 93, 033602 (2004
Soliton topology versus discrete symmetry in optical lattices
We address the existence of vortex solitons supported by azimuthally
modulated lattices and reveal how the global lattice discrete symmetry has
fundamental implications on the possible topological charges of solitons. We
set a general ``charge rule'' using group-theory techniques, which holds for
all lattices belonging to a given symmetry group. Focusing in the case of
Bessel lattices allows us to derive also a overall stability rule for the
allowed vortex solitons.Comment: 4 pages, 3 figures. To appear in Phys. Rev. Let
- …
