117,336 research outputs found
Acoustic energy transmission in cast iron pipelines
In this paper we propose acoustic power transfer as a method for the remote powering of pipeline sensor nodes. A theoretical framework of acoustic power propagation in the ceramic transducers and the metal structures is drawn, based on the Mason equivalent circuit. The effect of mounting on the electrical response of piezoelectric transducers is studied experimentally. Using two identical transducer structures, power transmission of 0.33 mW through a 1 m long, 118 mm diameter cast iron pipe, with 8 mm wall thickness is demonstrated, at 1 V received voltage amplitude. A near-linear relationship between input and output voltage is observed. These results show that it is possible to deliver significant power to sensor nodes through acoustic waves in solid structures. The proposed method may enable the implementation of acoustic - powered wireless sensor nodes for structural and operation monitoring of pipeline infrastructure
Effect of 7-dehydrocholesterol and cholesterol-loaded cyclodextrins on bull sperm motility during short term storage.
The emerging population of pulsar wind nebulae in hard X-rays
The hard X-ray synchrotron emission from pulsar wind nebulae (PWNe) probes
energetic particles, closely related to the pulsar injection power at the
present time. INTEGRAL has disclosed the yet poorly known population of hard
X-ray pulsar/PWN systems. We summarize the properties of the class, with
emphasys on the first hard X-ray bow-shock (CTB 80 powered by PSR B1951+32),
and highlight some prospects for the study of Pulsar Wind Nebulae with the
Simbol-X mission.Comment: Proceedings of the 2nd Simbol-X Symposium, AIP Conf. Proc. Series,
Eds. P. Ferrando and J. Rodriguez (4 pages, 2 figures
Dynamics on the Way to Forming Glass: Bubbles in Space-time
We review a theoretical perspective of the dynamics of glass forming liquids
and the glass transition. It is a perspective we have developed with our
collaborators during this decade. It is based upon the structure of trajectory
space. This structure emerges from spatial correlations of dynamics that appear
in disordered systems as they approach non-ergodic or jammed states. It is
characterized in terms of dynamical heterogeneity, facilitation and excitation
lines. These features are associated with a newly discovered class of
non-equilibrium phase transitions. Equilibrium properties have little if
anything to do with it. The broken symmetries of these transitions are obscure
or absent in spatial structures, but they are vivid in space-time (i.e.,
trajectory space). In our view, the glass transition is an example of this
class of transitions. The basic ideas and principles we review were originally
developed through the analysis of idealized and abstract models. Nevertheless,
the central ideas are easily illustrated with reference to molecular dynamics
of more realistic atomistic models, and we use that illustrative approach here.Comment: 21 pages, 8 figures. Submitted to Annu. Rev. Phys. Che
Pattern formation in chemically interacting active rotors with self-propulsion
We demonstrate that active rotations in chemically signalling particles, such as autochemotactic close to walls, create a route for pattern formation based on a nonlinear yet deterministic instability mechanism. For slow rotations, we find a transient persistence of the uniform state, followed by a sudden formation of clusters contingent on locking of the average propulsion direction by chemotaxis. These clusters coarsen, which results in phase separation into a dense and a dilute region. Faster rotations arrest phase separation leading to a global travelling wave of rotors with synchronized roto-translational motion. Our results elucidate the physics resulting from the competition of two generic paradigms in active matter, chemotaxis and active rotations, and show that the latter provides a tool to design programmable self-assembly of active matter, for example to control coarsening.Marie Skłodowska Curie (Intra European Fellowship within Horizon 2020 (Grant ID: 654908)), Royal Society, Engineering and Physical Sciences Research Counci
Interplay of Mre11 Nuclease with Dna2 plus Sgs1 in Rad51-Dependent Recombinational Repair
The Mre11/Rad50/Xrs2 complex initiates IR repair by binding to the end of a double-strand break, resulting in 5′ to 3′ exonuclease degradation creating a single-stranded 3′ overhang competent for strand invasion into the unbroken chromosome. The nuclease(s) involved are not well understood. Mre11 encodes a nuclease, but it has 3′ to 5′, rather than 5′ to 3′ activity. Furthermore, mutations that inactivate only the nuclease activity of Mre11 but not its other repair functions, mre11-D56N and mre11-H125N, are resistant to IR. This suggests that another nuclease can catalyze 5′ to 3′ degradation. One candidate nuclease that has not been tested to date because it is encoded by an essential gene is the Dna2 helicase/nuclease. We recently reported the ability to suppress the lethality of a dna2Δ with a pif1Δ. The dna2Δ pif1Δ mutant is IR-resistant. We have determined that dna2Δ pif1Δ mre11-D56N and dna2Δ pif1Δ mre11-H125N strains are equally as sensitive to IR as mre11Δ strains, suggesting that in the absence of Dna2, Mre11 nuclease carries out repair. The dna2Δ pif1Δ mre11-D56N triple mutant is complemented by plasmids expressing Mre11, Dna2 or dna2K1080E, a mutant with defective helicase and functional nuclease, demonstrating that the nuclease of Dna2 compensates for the absence of Mre11 nuclease in IR repair, presumably in 5′ to 3′ degradation at DSB ends. We further show that sgs1Δ mre11-H125N, but not sgs1Δ, is very sensitive to IR, implicating the Sgs1 helicase in the Dna2-mediated pathway
The Routing of Complex Contagion in Kleinberg's Small-World Networks
In Kleinberg's small-world network model, strong ties are modeled as
deterministic edges in the underlying base grid and weak ties are modeled as
random edges connecting remote nodes. The probability of connecting a node
with node through a weak tie is proportional to , where
is the grid distance between and and is the
parameter of the model. Complex contagion refers to the propagation mechanism
in a network where each node is activated only after neighbors of the
node are activated.
In this paper, we propose the concept of routing of complex contagion (or
complex routing), where we can activate one node at one time step with the goal
of activating the targeted node in the end. We consider decentralized routing
scheme where only the weak ties from the activated nodes are revealed. We study
the routing time of complex contagion and compare the result with simple
routing and complex diffusion (the diffusion of complex contagion, where all
nodes that could be activated are activated immediately in the same step with
the goal of activating all nodes in the end).
We show that for decentralized complex routing, the routing time is lower
bounded by a polynomial in (the number of nodes in the network) for all
range of both in expectation and with high probability (in particular,
for and
for in expectation),
while the routing time of simple contagion has polylogarithmic upper bound when
. Our results indicate that complex routing is harder than complex
diffusion and the routing time of complex contagion differs exponentially
compared to simple contagion at sweetspot.Comment: Conference version will appear in COCOON 201
Seeds Buffering for Information Spreading Processes
Seeding strategies for influence maximization in social networks have been
studied for more than a decade. They have mainly relied on the activation of
all resources (seeds) simultaneously in the beginning; yet, it has been shown
that sequential seeding strategies are commonly better. This research focuses
on studying sequential seeding with buffering, which is an extension to basic
sequential seeding concept. The proposed method avoids choosing nodes that will
be activated through the natural diffusion process, which is leading to better
use of the budget for activating seed nodes in the social influence process.
This approach was compared with sequential seeding without buffering and single
stage seeding. The results on both real and artificial social networks confirm
that the buffer-based consecutive seeding is a good trade-off between the final
coverage and the time to reach it. It performs significantly better than its
rivals for a fixed budget. The gain is obtained by dynamic rankings and the
ability to detect network areas with nodes that are not yet activated and have
high potential of activating their neighbours.Comment: Jankowski, J., Br\'odka, P., Michalski, R., & Kazienko, P. (2017,
September). Seeds Buffering for Information Spreading Processes. In
International Conference on Social Informatics (pp. 628-641). Springe
- …
