982 research outputs found

    Second Einstein Telescope Mock Science Challenge : Detection of the GW Stochastic Background from Compact Binary Coalescences

    Full text link
    We present the results of the search for an astrophysical gravitational-wave stochastic background during the second Einstein Telescope mock data and science challenge. Assuming that the loudest sources can be detected individually and removed from the data, we show that the residual background can be recovered with an accuracy of 11% with the standard cross-correlation statistic, after correction of a systematic bias due to the non-isotropy of the sources.Comment: 15 pages, 4 figures, accepted for publication in Physical Review

    A Mock Data and Science Challenge for Detecting an Astrophysical Stochastic Gravitational-Wave Background with Advanced LIGO and Advanced Virgo

    Full text link
    The purpose of this mock data and science challenge is to prepare the data analysis and science interpretation for the second generation of gravitational-wave experiments Advanced LIGO-Virgo in the search for a stochastic gravitational-wave background signal of astrophysical origin. Here we present a series of signal and data challenges, with increasing complexity, whose aim is to test the ability of current data analysis pipelines at detecting an astrophysically produced gravitational-wave background, test parameter estimation methods and interpret the results. We introduce the production of these mock data sets that includes a realistic observing scenario data set where we account for different sensitivities of the advanced detectors as they are continuously upgraded toward their design sensitivity. After analysing these with the standard isotropic cross-correlation pipeline we find that we are able to recover the injected gravitational-wave background energy density to within 2σ2\sigma for all of the data sets and present the results from the parameter estimation. The results from this mock data and science challenge show that advanced LIGO and Virgo will be ready and able to make a detection of an astrophysical gravitational-wave background within a few years of operations of the advanced detectors, given a high enough rate of compact binary coalescing events

    Transverse confinement in stochastic cooling of trapped atoms

    Full text link
    Stochastic cooling of trapped atoms is considered for a laser-beam configuration with beam waists equal or smaller than the extent of the atomic cloud. It is shown, that various effects appear due to this transverse confinement, among them heating of transverse kinetic energy. Analytical results of the cooling in dependence on size and location of the laser beam are presented for the case of a non-degenerate vapour.Comment: 14 pages, 5 figures, accepted for publication in Journal of Optics

    A time frequency analysis of wave packet fractional revivals

    Full text link
    We show that the time frequency analysis of the autocorrelation function is, in many ways, a more appropriate tool to resolve fractional revivals of a wave packet than the usual time domain analysis. This advantage is crucial in reconstructing the initial state of the wave packet when its coherent structure is short-lived and decays before it is fully revived. Our calculations are based on the model example of fractional revivals in a Rydberg wave packet of circular states. We end by providing an analytical investigation which fully agrees with our numerical observations on the utility of time-frequency analysis in the study of wave packet fractional revivals.Comment: 9 pages, 4 figure

    Ferromagnetism in a lattice of Bose condensates

    Full text link
    We show that an ensemble of spinor Bose-Einstein condensates confined in a one dimensional optical lattice can undergo a ferromagnetic phase transition and spontaneous magnetization arises due to the magnetic dipole-dipole interaction. This phenomenon is analogous to ferromagnetism in solid state physics, but occurs with bosons instead of fermions.Comment: 4 pages, 2 figure

    Quasi-periodic vs. irreversible dynamics of an optically confined Bose-Einstein condensate

    Full text link
    We consider the evolution of a dilute Bose-Einstein condensate in an optical trap formed by a doughnut laser mode. By solving a one dimensional Gross-Pitaevskii equation and looking at the variance and the statistical entropy associated with the position of the system we can study the dynamical behavior of the system. It is shown that for small condensates nonlinear revivals of the macroscopic wave function are expected. For sufficiently large and dense condensates irreversible dynamics takes place for which revivals of regular dynamics appear as predicted in [9]. These results are confirmed by a two dimensional simulation in which the scales of energy associated with the two different directions mimic the experimental situation.Comment: 10 page

    Wave Packet Echoes in the Motion of Trapped Atoms

    Get PDF
    We experimentally demonstrate and systematically study the stimulated revival (echo) of motional wave packet oscillations. For this purpose, we prepare wave packets in an optical lattice by non-adiabatically shifting the potential and stimulate their reoccurence by a second shift after a variable time delay. This technique, analogous to spin echoes, enables one even in the presence of strong dephasing to determine the coherence time of the wave packets. We find that for strongly bound atoms it is comparable to the cooling time and much longer than the inverse of the photon scattering rate

    Long-Term Evolution and Revival Structure of Rydberg Wave Packets for Hydrogen and Alkali-Metal Atoms

    Full text link
    This paper begins with an examination of the revival structure and long-term evolution of Rydberg wave packets for hydrogen. We show that after the initial cycle of collapse and fractional/full revivals, which occurs on the time scale trevt_{\rm rev}, a new sequence of revivals begins. We find that the structure of the new revivals is different from that of the fractional revivals. The new revivals are characterized by periodicities in the motion of the wave packet with periods that are fractions of the revival time scale trevt_{\rm rev}. These long-term periodicities result in the autocorrelation function at times greater than trevt_{\rm rev} having a self-similar resemblance to its structure for times less than trevt_{\rm rev}. The new sequence of revivals culminates with the formation of a single wave packet that more closely resembles the initial wave packet than does the full revival at time trevt_{\rm rev}, i.e., a superrevival forms. Explicit examples of the superrevival structure for both circular and radial wave packets are given. We then study wave packets in alkali-metal atoms, which are typically used in experiments. The behavior of these packets is affected by the presence of quantum defects that modify the hydrogenic revival time scales and periodicities. Their behavior can be treated analytically using supersymmetry-based quantum-defect theory. We illustrate our results for alkali-metal atoms with explicit examples of the revival structure for radial wave packets in rubidium.Comment: To appear in Physical Review A, vol. 51, June 199
    corecore