244 research outputs found
R/V POSEIDON cruise POS498, Recovery of Observatories at Athina Mud Volcano, Izmir (Turkey) - Catania (Italy), 18 April - 1 May, 2016
Report and preliminary results of R/V SONNE Cruise SO251 - Extreme events Archived in the GEologial Record of JAPAN's subduction margins (EAGER-JAPAN)
Leg A SO251-1, Yokohama - Yokohama, 04.10.2016 - 15.10.2016, Leg B SO251-2, Yokohama - Yokohama, 18.10.2016 - 02.11.201
Recommended from our members
Scratch Forensics
Scratches on optical components which are formed during fabrication, cleaning, handling and end-use, are widespread and almost always detrimental. The impact of scratches on the end-use of the optic includes increased optical scatter, reduced system performance, and reduced strength. In the case of optics used in high intensity laser applications, prevention of scratches is paramount because they are closely associated with laser damage. Evaluation of the characteristics (dimensions, location on optic, shape, and orientation) of a scratch can serve a powerful tool to identify the cause of the scratch and lead to mitigations to prevent their reoccurrence. It is likely that opticians have used such techniques for hundreds of years. In recent years, by applying techniques of fracture mechanics and tribology, several new semi-quantitative rules-of-thumb have been developed allowing one to estimate the size and shape of the scratch inducing asperity or rogue particle, the load on the particle, the depth of the fractures in the scratch, and properties of material housing the rogue particle. The following discussion reviews some these techniques, which as a whole, we refer to as 'Scratch Forsenics'
Assessing downscaling techniques for frequency analysis, total precipitation and rainy day estimation in CMIP6 simulations over hydrological years
General circulation models generate climate simulations on grids with resolutions ranging from 50 to 600 km. The resulting coarse spatial resolution of the model outcomes requires post-processing routines to ensure reliable climate information for practical studies, prompting the widespread application of downscaling techniques. However, assessing the effectiveness of multiple downscaling techniques is essential, as their accuracy varies depending on the objectives of the analysis and the characteristics of the case study. In this context, this study aims to evaluate the performance of downscaling the daily precipitation series in the Metropolitan Region of Belo Horizonte (MRBH), Brazil, with the final scope of performing frequency analyses and estimating total precipitation and the number of rainy days per hydrological year at both annual and multiannual levels. To develop this study, 78 climate model simulations with a horizontal resolution of 100 km, which participated in the SSP1-2.6 and/or SSP5-8.5 scenarios of CMIP6, are employed. The results highlight that adjusting the simulations from the general circulation models by the delta method, quantile mapping and regression trees produces accurate results for estimating the total precipitation and number of rainy days. Finally, it is noted that employing downscaled precipitation series through quantile mapping and regression trees also yields promising results in terms of the frequency analyses.</p
Strength of Protection for Geographical Indications: Promotion Incentives and Welfare Effects
We address the question of how the strength of protection for geographical indications (GIs) affects the GI industry\u27s promotion incentives, equilibrium market outcomes, and the distribution of welfare. Geographical indication producers engage in informative advertising by associating their true quality premium (relative to a substitute product) with a specific label emphasizing the GI\u27s geographic origin. The extent to which the names/words of the GI label can be used and/or imitated by competing products—which depends on the strength of GI protection—determines how informative the GI promotion messages can be. Consumers’ heterogeneous preferences (vis-à-vis the GI quality premium) are modeled in a vertically differentiated framework. Both the GI industry and the substitute product industry are assumed to be competitive (with free entry). The model is calibrated and solved for alternative parameter values. Results show that producers of the GI and of the lower-quality substitute good have divergent interests: GI producers are better off with full protection, whereas the substitute good\u27s producers prefer intermediate levels of protection (but they never prefer zero protection because they benefit indirectly if the GI producers’ incentives to promote are preserved). For consumers and aggregate welfare, the preferred level of protection depends on the model\u27s parameters, with an intermediate level of protection being optimal in many circumstances
Recommended from our members
Laser damage initiation and growth of antireflection coated S-FAP crystal surfaces prepared by pitch lap and magnetorheological finishing
Antireflection (AR) coatings typically damage at the interface between the substrate and coating. Therefore the substrate finishing technology can have an impact on the laser resistance of the coating. For this study, AR coatings were deposited on Yb:S-FAP [Yb{sup 3+}:Sr{sub 5}(PO{sub 4}){sub 3}F] crystals that received a final polish by both conventional pitch lap finishing as well as magnetorheological finishing (MRF). SEM images of the damage morphology reveals laser damage originates at scratches and at substrate coating interfacial absorbing defects. Previous damage stability tests on multilayer mirror coatings and bare surfaces revealed damage growth can occur at fluences below the initiation fluence. The results from this study suggest the opposite trend for AR coatings. Investigation of unstable HR and uncoated surface damage morphologies reveals significant radial cracking that is not apparent with AR damage due to AR delamination from the coated surface with few apparent cracks at the damage boundary. Damage stability tests show that coated Yb:S-FAP crystals can operate at 1057 nm at fluences around 20 J/cm{sup 2} at 10 ns; almost twice the initiation damage threshold
Sensors prioritisation for hydrological forecasting based on interpretable machine learning
The digitalisation of the hydrological sector introduces new challenges related to IoT network implementation, extensive data management, and real-time analysis while offering significant opportunities to improve hydrological forecasts. Reliable information is crucial for managing hydrogeological risks and optimising water usage, particularly in the current era of climate change, marked by frequent and severe extreme events such as intense precipitation and prolonged droughts. This study aims to enhance short-term hydrological predictions by prioritising sensors based on interpretable machine learning. We propose an evaluation framework that involves tuning machine learning-based hydrological models for different horizons, applying leave-one-out cross-validation to simulate sensor failures and evaluate their significance, and defining sensor priority levels. Conducted in the South Tyrol watershed (northern Italy), this study uses data from streamflow gauges and weather stations. The results show that specific sensors significantly impact forecasting accuracy, and prioritisation improves the reliability of hydrological predictions. These findings highlight the importance of maintaining critical sensors and provide a data-driven methodology for optimising resource allocation in monitoring system maintenance, ultimately enhancing the robustness of hydrological forecasting and risk mitigation strategies
Recommended from our members
Sub-surface mechanical damage distributions during grinding of fused silica
The distribution and characteristics of surface cracking (i.e. sub-surface damage or SSD) formed during standard grinding processes has been investigated on fused silica glass. The SSD distributions of the ground surfaces were determined by: (1) creating a shallow (18-108 {micro}m) wedge/taper on the surface by magneto-rheological finishing; (2) exposing the SSD by HF acid etching; and (3) performing image analysis of the observed cracks from optical micrographs taken along the surface taper. The observed surface cracks are characterized as near-surface lateral and deeper trailing indent type fractures (i.e., chatter marks). The SSD depth distributions are typically described by a single exponential distribution followed by an asymptotic cutoff in depth (c{sub max}). The length of the trailing indent is strongly correlated with a given process. Using established fracture indentation relationships, it is shown that only a small fraction of the abrasive particles are being mechanically loaded and causing fracture, and it is likely the larger particles in the abrasive particle size distribution that bear the higher loads. The SSD depth was observed to increase with load and with a small amount of larger contaminant particles. Using a simple brittle fracture model for grinding, the SSD depth distribution has been related to the SSD length distribution to gain insight into ''effective'' size distribution of particles participating in the fracture. Both the average crack length and the surface roughness were found to scale linearly with the maximum SSD depth (c{sub max}). These relationships can serve as useful rules-of-thumb for nondestructively estimating SSD depth and to identify the process that caused the SSD. In certain applications such as high intensity lasers, SSD on the glass optics can serve as a reservoir for minute amounts of impurities that absorb the high intensity laser light and lead to subsequent laser-induced surface damage. Hence a more scientific understanding of SSD formation can provide a means to establish recipes to fabricate SSD-free, laser damage resistant optical surfaces
Recommended from our members
Imprinting continuously varying topographical structure onto large-aperture optical surfaces using magnetorheological finishing
Over the past four years we have advanced Magnetorheological Finishing (MRF) techniques and tools to imprint complex continuously varying topographical structures onto large-aperture (430 x 430 mm) optical surfaces. These optics, known as continuous phase plates (CPPs), are important for high-power laser applications requiring precise manipulation and control of beam-shape, energy distribution, and wavefront profile. MRF's unique deterministic-sub-aperture polishing characteristics make it possible to imprint complex topographical information onto optical surfaces at spatial scale-lengths approaching 1 mm and surface peak-to-valleys as high as 22 {micro}m. During this discussion, we will present the evolution of the MRF imprinting technology and the MRF tools designed to manufacture large-aperture 430 x 430 mm CPPs. Our results will show how the MRF removal function impacts and limits imprint fidelity and what must be done to arrive at a high-quality surface. We also present several examples of this imprinting technology for fabrication of phase correction plates and CPPs for use in high-power laser applications
Recommended from our members
Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing
The distribution and characteristics of surface cracks (i.e., sub-surface damage or scratching) on fused silica formed during grinding/polishing resulting from the addition of rogue particles in the base slurry has been investigated. Fused silica samples (10 cm diameter x 1 cm thick) were: (1) ground by loose abrasive grinding (alumina particles 9-30 {micro}m) on a glass lap with the addition of larger alumina particles at various concentrations with mean sizes ranging from 15-30 {micro}m, or (2) polished (using 0.5 {micro}m cerium oxide slurry) on various laps (polyurethanes pads or pitch) with the addition of larger rogue particles (diamond (4-45 {micro}m), pitch, dust, or dried Ceria slurry agglomerates) at various concentrations. For the resulting ground samples, the crack distributions of the as-prepared surfaces were determined using a polished taper technique. The crack depth was observed to: (1) increase at small concentrations (>10{sup -4} fraction) of rogue particles; and (2) increase with rogue particle concentration to crack depths consistent with that observed when grinding with particles the size of the rogue particles alone. For the polished samples, which were subsequently etched in HF:NH{sub 4}F to expose the surface damage, the resulting scratch properties (type, number density, width, and length) were characterized. The number density of scratches increased exponentially with the size of the rogue diamond at a fixed rogue diamond concentration suggesting that larger particles are more likely to lead to scratching. The length of the scratch was found to increase with rogue particle size, increase with lap viscosity, and decrease with applied load. At high diamond concentrations, the type of scratch transitioned from brittle to ductile and the length of the scratches dramatically increased and extended to the edge of the optic. The observed trends can explained semi-quantitatively in terms of the time needed for a rogue particle to penetrate into a viscoelastic lap. The results of this study provide useful insights and 'rules-of-thumb' relating scratch characteristics observed on surfaces during optical glass fabrication to the characteristics rogue particles causing them and their possible source
- …
