11,875 research outputs found
Three-nucleon forces and spectroscopy of neutron-rich calcium isotopes
We study excited-state properties of neutron-rich calcium isotopes based on
chiral two- and three-nucleon interactions. We first discuss the details of our
many-body framework, investigate convergence properties, and for two-nucleon
interactions benchmark against coupled-cluster calculations. We then focus on
the spectroscopy of 47-56Ca, finding that with both 3N forces and an extended
pfg9/2 valence space, we obtain a good level of agreement with experiment. We
also study electromagnetic transitions and find that experimental data are well
described by our calculations. In addition, we provide predictions for
unexplored properties of neutron-rich calcium isotopes.Comment: 15 pages, 22 figures, published versio
Exploring sd-shell nuclei from two- and three-nucleon interactions with realistic saturation properties
We study ground- and excited-state properties of all sd-shell nuclei with
neutron and proton numbers 8 <= N,Z <= 20, based on a set of low-resolution
two- and three-nucleon interactions that predict realistic saturation
properties of nuclear matter. We focus on estimating the theoretical
uncertainties due to variation of the resolution scale, the low-energy
couplings, as well as from the many-body method. The experimental two-neutron
and two-proton separation energies are reasonably well reproduced, with an
uncertainty range of about 5 MeV. The first excited 2+ energies also show
overall agreement, with a more narrow uncertainty range of about 500 keV. In
most cases, this range is dominated by the uncertainties in the Hamiltonian.Comment: 6 pages, 4 figure
Nuclear forces and their impact on neutron-rich nuclei and neutron-rich matter
We review the impact of nuclear forces on matter at neutron-rich extremes.
Recent results have shown that neutron-rich nuclei become increasingly
sensitive to three-nucleon forces, which are at the forefront of theoretical
developments based on effective field theories of quantum chromodynamics. This
includes the formation of shell structure, the spectroscopy of exotic nuclei,
and the location of the neutron dripline. Nuclear forces also constrain the
properties of neutron-rich matter, including the neutron skin, the symmetry
energy, and the structure of neutron stars. We first review our understanding
of three-nucleon forces and show how chiral effective field theory makes unique
predictions for many-body forces. Then, we survey results with three-nucleon
forces in neutron-rich oxygen and calcium isotopes and neutron-rich matter,
which have been explored with a range of many-body methods. Three-nucleon
forces therefore provide an exciting link between theoretical, experimental and
observational nuclear physics frontiers.Comment: 28 pages, 13 figures, 1 tabl
Inelastic light scattering and the excited states of many-electron quantum dots
A consistent calculation of resonant inelastic (Raman) scattering amplitudes
for relatively large quantum dots, which takes account of valence-band mixing,
discrete character of the spectrum in intermediate and final states, and
interference effects, is presented. Raman peaks in charge and spin channels are
compared with multipole strengths and with the density of energy levels in
final states. A qualitative comparison with the available experimental results
is given.Comment: 5 pages, accepted in J. Phys.: Condens. Matte
Stability of sterols in phytosterol-enriched milk under different heating conditions
Commercially available phytosterol-enriched milk was subjected to usual and drastic heating conditions to evaluate the stability of the sterols at different treatments. Products showed 422.2 mg of phytosterols/100 g of milk and 132 microg of sterol oxidation products (SOPs)/g of fat (277 microg of SOPs/100 g of milk). Schaal oven conditions (24 h/65 degrees C, equivalent to 1 month of storage at room temperature) reduced the phytosterol content by only 4%. Drastic heating treatments (2 min of microwave heating at 900 W or 15 min of electrical heating at 90 degrees C) led to a 60% decrease of total phytosterol content, with a significant increase of TBARs. The oxysterol amount under those conditions (which was higher in microwave-treated samples) was lower than expected, probably because of the degradation of the oxidation products. Usual heating conditions (1.5 min of microwaves) maintained phytosterol content on physiologically active values (301 mg/100 g of milk) with oxidation percentages around 0.12-0.40% for phytosterols and 1.13% for cholesterol
How Barred is the NIR Nearby Universe? An analysis using 2MASS
We determine a firm lower limit to the bar fraction of 0.58 in the nearby
universe using J+H+Ks-band images for 134 spirals from 2MASS. With a mean
deprojected semi-major axis of 5.1 kpc, and a mean deprojected ellipticity of
0.45 this local bar sample lays the ground work for studies on bar formation
and evolution at high redshift.Comment: In the proceedings "Penetrating Bars through Masks of Cosmic Dust:
The Hubble Tuning Fork strikes a New Note
Varying efficacy of intermittent preventive treatment for malaria in infants in two similar trials: public health implications.
BACKGROUND\ud
\ud
Intermittent preventive treatment (IPTi) with sulphadoxine-pyrimethamine (SP) in infants resulted in different estimates of clinical malaria protection in two trials that used the same protocol in Ifakara, Tanzania, and Manhiça, Mozambique. Understanding the reasons for the discrepant results will help to elucidate the action mechanism of this intervention, which is essential for rational policy formulation.\ud
\ud
METHODS\ud
\ud
A comparative analysis of two IPTi trials that used the same study design, follow-up, intervention, procedures and assessment of outcomes, in Tanzania and Mozambique was undertaken. Children were randomised to receive either SP or placebo administered 3 times alongside routine vaccinations delivered through the Expanded Program on Immunisation (EPI). Characteristics of the two areas and efficacy on clinical malaria after each dose were compared.\ud
\ud
RESULTS\ud
\ud
The most relevant difference was in ITN's use ; 68% in Ifakara and zero in Manhiça. In Ifakara, IPTi was associated with a 53% (95% CI 14.0; 74.1) reduction in the risk of clinical malaria between the second and the third dose; during the same period there was no significant effect in Manhiça. Similarly, protection against malaria episodes was maintained in Ifakara during 6 months after dose 3, but no effect of IPTi was observed in Manhiça.\ud
\ud
CONCLUSION\ud
\ud
The high ITN coverage in Ifakara is the most likely explanation for the difference in IPTi efficacy on clinical malaria. Combination of IPTi and ITNs may be the most cost-effective tool for malaria control currently available, and needs to be explored in current and future studies.\ud
\ud
TRIAL REGISTRATION\ud
\ud
Manhiça study registration number: NCT00209795Ifakara study registration number: NCT88523834
Enhancement of dielectric barrier layer properties by sol-gel and PECVD stacks
Thin-film PV modules grown on flexible, light weight, thermally stable and low cost substrates such as stainless steel foil, are an attractive product for solar market applications. When metal foils are used as substrate, it is essential to deposit a dielectric barrier layer to isolate electrically and chemically the thin-film solar cells front the substrate. In this work, SiOx stacks deposited on ‘rough’ stainless steel by a combination of a new sol-gel formulation and a Plasma Enhanced Chemical Vapor Deposition (PECVD) deposition step are reported as a suitable dielectric barrier layer candidate. Using these SiOx multilayers, a smooth and homogeneous film was achieved. X-ray diffraction (XRD) analysis showed that back contact of the solar cell (based on Molybdenum) is not affected by the presence of the barrier layer. Moreover, according to X-ray photoelectron spectroscopy (XPS) and Secondary Ion Mass Spectrometry (SIMS) measurements, this approach led to excellent barrier layer properties against the diffusion of impurities from the stainless steel. A complete electrical characterization of these dielectric barrier layers was also carried out showing good electrical insulation.European Union RFSR-CT-2014-0001
Ground-State Electromagnetic Moments of Calcium Isotopes
High-resolution bunched-beam collinear laser spectroscopy was used to measure
the optical hyperfine spectra of the Ca isotopes. The ground state
magnetic moments of Ca and quadrupole moments of Ca were
measured for the first time, and the Ca ground state spin was
determined in a model-independent way. Our results provide a critical test of
modern nuclear theories based on shell-model calculations using
phenomenological as well as microscopic interactions. The results for the
neutron-rich isotopes are in excellent agreement with predictions using
interactions derived from chiral effective field theory including three-nucleon
forces, while lighter isotopes illustrate the presence of particle-hole
excitations of the Ca core in their ground state.Comment: Accepted as a Rapid Communication in Physical Review
- …
