1,608 research outputs found
Semileptonic decays of baryons in a relativistic quark model
We calculate semileptonic decays of light and heavy baryons in a
relativistically covariant constituent quark model. The model is based on the
Bethe-Salpeter-equation in instantaneous approximation. It generates
satisfactory mass spectra for mesons and baryons up to the highest observable
energies. Without introducing additional free parameters we compute on this
basis helicity amplitudes of electronic and muonic semileptonic decays of
baryons. We thus obtain form factor ratios and decay rates in good agreement
with experiment.Comment: 8 pages, 10 figures, 2 tables, typos remove
Electromagnetic form factors of hyperons in a relativistic quark model
The relativistically covariant constituent quark model developed by the Bonn
group is used to compute the EM form factors of strange baryons. We present
form-factor results for the ground-state and some excited hyperons. The
computed magnetic moments agree well with the experimental values and the
magnetic form factors follow a dipole dependence.Comment: 4 pages, 1 figure, Proceedings for NSTAR '04 conference in Grenoble,
France, March 24-27, 2004 (World Scientific
Electromagnetic properties of strange baryons in a relativistic quark model
We present some of our results for the electromagnetic properties of excited Σ hyperons, computed within the framework of the Bonn constituent-quark model, which is based on the Bethe-Salpeter approach. The seven parameters entering the model are fitted against the best-known baryon masses. Accordingly, the results for the form factors and helicity amplitudes are genuine predictions. We compare with the scarce experimental data available and discuss the processes in which Σ
*'s may play an important role
Reconstruction of the two-dimensional gravitational potential of galaxy clusters from X-ray and Sunyaev-Zel'dovich measurements
The mass of galaxy clusters is not a direct observable, nonetheless it is
commonly used to probe cosmological models. Based on the combination of all
main cluster observables, that is, the X-ray emission, the thermal
Sunyaev-Zel'dovich (SZ) signal, the velocity dispersion of the cluster
galaxies, and gravitational lensing, the gravitational potential of galaxy
clusters can be jointly reconstructed. We derive the two main ingredients
required for this joint reconstruction: the potentials individually
reconstructed from the observables and their covariance matrices, which act as
a weight in the joint reconstruction. We show here the method to derive these
quantities. The result of the joint reconstruction applied to a real cluster
will be discussed in a forthcoming paper. We apply the Richardson-Lucy
deprojection algorithm to data on a two-dimensional (2D) grid. We first test
the 2D deprojection algorithm on a -profile. Assuming hydrostatic
equilibrium, we further reconstruct the gravitational potential of a simulated
galaxy cluster based on synthetic SZ and X-ray data. We then reconstruct the
projected gravitational potential of the massive and dynamically active cluster
Abell 2142, based on the X-ray observations collected with XMM-Newton and the
SZ observations from the Planck satellite. Finally, we compute the covariance
matrix of the projected reconstructed potential of the cluster Abell 2142 based
on the X-ray measurements collected with XMM-Newton. The gravitational
potentials of the simulated cluster recovered from synthetic X-ray and SZ data
are consistent, even though the potential reconstructed from X-rays shows
larger deviations from the true potential. Regarding Abell 2142, the projected
gravitational cluster potentials recovered from SZ and X-ray data reproduce
well the projected potential inferred from gravitational-lensing observations.
(abridged)Comment: accepted for publication in the journal A&
A role for ultrasonic vocalisation in social communication and divergence of natural populations of the house mouse (Mus musculus domesticus)
It has long been known that rodents emit signals in the ultrasonic range, but their role in social communication and mating is still under active exploration. While inbred strains of house mice have emerged as a favourite model to study ultrasonic vocalisation (USV) patterns, studies in wild animals and natural situations are still rare. We focus here on two wild derived mouse populations. We recorded them in dyadic encounters for extended periods of time to assess possible roles of USVs and their divergence between allopatric populations. We have analysed song frequency and duration, as well as spectral features of songs and syllables. We show that the populations have indeed diverged in several of these aspects and that USV patterns emitted in a mating context differ from those emitted in same sex encounters. We find that females vocalize not less, in encounters with another female even more than males. This implies that the current focus of USVs being emitted mainly by males within the mating context needs to be reconsidered. Using a statistical syntax analysis we find complex temporal sequencing patterns that could suggest that the syntax conveys meaningful information to the receivers. We conclude that wild mice use USV for complex social interactions and that USV patterns can diverge fast between populations
Electric and magnetic form factors of strange baryons
Predictions for the electromagnetic form factors of the Lambda$, Sigma and Xi
hyperons are presented. The numerical calculations are performed within the
framework of the fully relativistic constituent-quark model developed by the
Bonn group. The computed magnetic moments compare favorably with the
experimentally known values. Most magnetic form factors G_M(Q^2) can be
parametrized in terms of a dipole with cutoff masses ranging from 0.79 to 1.14
GeV.Comment: 15 pages, 8 figures, 3 tables, submitted to Eur. Phys. J.
Rapid Determination of Radionuclides in Milk. Results of an intercomparison organized jointly by the I.A.E.A. and C.E.C. in 1972. EUR 4965.
Strong Two--Body Decays of Light Mesons
In this paper, we present results on strong two-body decay widths of light
mesons calculated in a covariant quark model. The model is based on
the Bethe-Salpeter equation in its instantaneous approximation and has already
been used for computing the complete meson mass spectrum and many electroweak
decay observables. Our approach relies on the use of a phenomenological
confinement potential with an appropriate spinorial Dirac structure and 't
Hooft's instanton--induced interaction as a residual force for pseudoscalar and
scalar mesons. The transition matrix element for the decay of one initial meson
into two final mesons is evaluated in lowest order by considering conventional
decays via quark loops as well as Zweig rule violating instanton--induced
decays generated by the six--quark vertex of 't Hooft's interaction; the latter
mechanism only contributes if all mesons in the decay have zero total angular
momentum. We show that the interference of both decay mechanisms plays an
important role in the description of the partial widths of scalar and
pseudoscalar mesons.Comment: 35 pages, 7 figure
Quark-antiquark composite systems: the Bethe-Salpeter equation in the spectral-integration technique
The Bethe-Salpeter equations for the light-quark composite systems, q q-bar,
are written in terms of spectral integrals. For the q q-bar -mesons
characterized by the mass M, spin J and radial quantum number n, the equations
are presented for the following (n,M^2)-trajectories: pi_J, eta_J, a_J, f_J,
rho_J, omega_J, h_J and b_J.Comment: 42 pages, 5 figures, typos correcte
Evidence for Ubiquitous, High-EW Nebular Emission in z~7 Galaxies: Towards a Clean Measurement of the Specific Star Formation Rate using a Sample of Bright, Magnified Galaxies
Growing observational evidence now indicates that nebular line emission has a
significant impact on the rest-frame optical fluxes of z~5-7 galaxies observed
with Spitzer. This line emission makes z~5-7 galaxies appear more massive, with
lower specific star formation rates. However, corrections for this line
emission have been very difficult to perform reliably due to huge uncertainties
on the overall strength of such emission at z>~5.5. Here, we present the most
direct observational evidence yet for ubiquitous high-EW [OIII]+Hbeta line
emission in Lyman-break galaxies at z~7, while also presenting a strategy for
an improved measurement of the sSFR at z~7. We accomplish this through the
selection of bright galaxies in the narrow redshift window z~6.6-7.0 where the
IRAC 4.5 micron flux provides a clean measurement of the stellar continuum
light. Observed 4.5 micron fluxes in this window contrast with the 3.6 micron
fluxes which are contaminated by the prominent [OIII]+Hbeta lines. To ensure a
high S/N for our IRAC flux measurements, we consider only the brightest
(H_{160}<26 mag) magnified galaxies we have identified in CLASH and other
programs targeting galaxy clusters. Remarkably, the mean rest-frame optical
color for our bright seven-source sample is very blue, [3.6]-[4.5]=-0.9+/-0.3.
Such blue colors cannot be explained by the stellar continuum light and require
that the rest-frame EW of [OIII]+Hbeta be greater than 637 Angstroms for the
average source. The bluest four sources from our seven-source sample require an
even more extreme EW of 1582 Angstroms. Our derived lower limit for the mean
[OIII]+Hbeta EW could underestimate the true EW by ~2x based on a simple
modeling of the redshift distribution of our sources. We can also set a robust
lower limit of >~4 Gyr^-1 on the specific star formation rates based on the
mean SED for our seven-source sample. (abridged)Comment: 9 pages, 6 figures, 1 table, submitted to the Astrophysical Journa
- …
