10,767 research outputs found

    Effect of Our Galaxy's Motion on Weak Lensing Measurements of Shear and Convergence

    Full text link
    In this work we investigate the effect on weak-lensing shear and convergence measurements due to distortions from the Lorentz boost induced by our Galaxy's motion. While no ellipticity is induced in an image from the Lorentz boost to first order in beta = v/c, the image is magnified. This affects the inferred convergence at a 10 per cent level, and is most notable for low multipoles in the convergence power spectrum C {\kappa}{\kappa} and for surveys with large sky coverage like LSST and DES. Experiments which image only small fractions of the sky and convergence power spectrum determinations at l > 5 can safely neglect the boost effect to first order in beta.Comment: 4 pages, replaced to reflect changes made for publication to MNRA

    Switching of the vortex polarity in a magnetic nanodisk by a DC current

    Full text link
    We study the dynamics of a vortex state nanodisk due to a dc spin current, perpendicular to the disk plane. The irreversible switching of the vortex polarity takes place above some threshold current. The detailed description of these processes is obtained by spin-lattice simulations.Comment: REVTeX, 4 pages, 3 figure

    Controlled vortex core switching in a magnetic nanodisk by a rotating field

    Full text link
    The switching process of the vortex core in a Permalloy nanodisk affected by a rotating magnetic field is studied theoretically. A detailed description of magnetization dynamics is obtained by micromagnetic simulations.Comment: REVTeX, 5 pages, 5 figure

    Off-centered immobile magnetic vortex under influence of spin-transfer torque

    Full text link
    Equilibrium magnetization distribution of the vortex state magnetic nanoparticle is affected by the influence of the spin-transfer torque: an off-center out--of--plane vortex appears in the case of the disk shape particle and pure planar vortex in the case of asymmetric ring shape particle. The spin current causes extra out-of-plane magnetization structures identical to well known dip structures for the moving vortex. The shape of the dip structure depends on the current strength and value of the off-center displacement and it does not depend on the vortex polarity. The critical current depends on the nanodot thickness

    Vortex motion in a finite-size easy-plane ferromagnet and application to a nanodot

    Full text link
    We study the motion of a non-planar vortex in a circular easy-plane ferromagnet, which imitates a magnetic nanodot. Analysis was done using numerical simulations and a new collective variable theory which includes the coupling of Goldstone-like mode with the vortex center. Without magnetic field the vortex follows a spiral orbit which we calculate. When a rotating in-plane magnetic field is included, the vortex tends to a stable limit cycle which exists in a significant range of field amplitude B and frequency ω\omega for a given system size L. For a fixed ω\omega, the radius R of the orbital motion is proportional to L while the orbital frequency Ω\Omega varies as 1/L and is significantly smaller than ω\omega. Since the limit cycle is caused by the interplay between the magnetization and the vortex motion, the internal mode is essential in the collective variable theory which then gives the correct estimate and dependency for the orbit radius RBL/ωR\sim B L/\omega. Using this simple theory we indicate how an ac magnetic field can be used to control vortices observed in real magnetic nanodots.Comment: 15 pages (RevTeX), 14 figures (eps
    corecore