124 research outputs found

    Key nodes of a microRNA network associated with the integrated mesenchymal subtype of high-grade serous ovarian cancer

    Get PDF
    Metastasis is the main cause of cancer mortality. One of the initiating events of cancer metastasis of epithelial tumors is epithelial-to-mesenchymal transition (EMT), during which cells dedifferentiate from a relatively rigid cell structure/morphology to a flexible and changeable structure/morphology often associated with mesenchymal cells. The presence of EMT in human epithelial tumors is reflected by the increased expression of genes and levels of proteins that are preferentially present in mesenchymal cells. The combined presence of these genes forms the basis of mesenchymal gene signatures, which are the foundation for classifying a mesenchymal subtype of tumors. Indeed, tumor classification schemes that use clustering analysis of large genomic characterizations, like The Cancer Genome Atlas (TCGA), have defined mesenchymal subtype in a number of cancer types, such as high-grade serous ovarian cancer and glioblastoma. However, recent analyses have shown that gene expression-based classifications of mesenchymal subtypes often do not associate with poor survival. This “paradox” can be ameliorated using integrated analysis that combines multiple data types. We recently found that integrating mRNA and microRNA (miRNA) data revealed an integrated mesenchymal subtype that is consistently associated with poor survival in multiple cohorts of patients with serous ovarian cancer. This network consists of 8 major miRNAs and 214 mRNAs. Among the 8 miRNAs, 4 are known to be regulators of EMT. This review provides a summary of these 8 miRNAs, which were associated with the integrated mesenchymal subtype of serous ovarian cancer

    SEEMP: A marketplace for the Labour Market

    Get PDF
    Employment Services are an important topic in the agenda of local governments and in the EU due to their social implications, such as sustainability, workforce mobility, workers’ re-qualification paths, training for fresh graduates and students. Many administrations started their own E-Government projects whose imitations emerge as the demand of workers mobility increases. The SEEMP system presented in this paper overcomes this issue in different ways: starting bilateral communications with near-border similar offices, building a federation of the local employment services, and merging isolate trials. The SEEMP approach relies on a distributed semantic service oriented infrastructure able to federate local projects, in order to create geographically aggregated services for employment by leveraging existing local ones. The social and technical aspects of the SEEMP project are presented, showing how the SEEMP system is integrated with National level systems

    Role of computed tomography coronary angiography in the management of coronary anomalies

    Get PDF
    Congenital abnormalities of coronary arteries are an uncommon cause of sudden cardiac death and are difficult to detect at coronary angiography. We describe two patients with acute coronary syndrome and non-occlusive coronary artery disease in which a 64-multidetector computed tomography (MDCT) coronary angiography showed the presence of a malignant coronary anomaly. Sixty-four-MDCT with the possibility of 3D reconstructions allows for easier diagnosis of coronary anomalies and provides essential details necessary for operative intervention

    High-throughput assessment of the antibody profile in ovarian cancer ascitic fluids

    Get PDF
    The identification of effective biomarkers for early diagnosis, prognosis, and response to treatments remains a challenge in ovarian cancer (OC) research. Here, we present an unbiased high-throughput approach to profile ascitic fluid autoantibodies in order to obtain a tumor-specific antigen signature in OC. We first reported the reactivity of immunoglobulins (Igs) purified from OC patient ascites towards two different OC cell lines. Using a discovery set of Igs, we selected tumor-specific antigens from a phage display cDNA library. After biopanning, 700 proteins were expressed as fusion protein and used in protein array to enable large-scale immunoscreening with independent sets of cancer and noncancerous control. Finally, the selected antigens were validated by ELISA. The initial screening identified eight antigenic clones: CREB3, MRPL46, EXOSC10, BCOR, HMGN2, HIP1R, OLFM4, and KIAA1755. These antigens were all validated by ELISA in a study involving ascitic Igs from 153 patients (69 with OC, 34 with other cancers and 50 without cancer), with CREB3 showing the highest sensitivity (86.95%) and specificity (98%). Notably, we were able to identify an association between the tumor-associated (TA) antibody response and the response to a first-line tumor treatment (platinum-based chemotherapy). A stronger association was found by combining three antigens (BCOR, CREB3, and MRLP46) as a single antibody signature. Measurement of an ascitic fluid antibody response to multiple TA antigens may aid in the identification of new prognostic signatures in OC patients and shift attention to new potentially relevant targets

    Effect of different bur grinding on the bond strength of self\u2013etching adhesives

    Get PDF
    This study compared the microtensile bond strength (MTBS) of three all-in-one adhesive systems and a two-step system using two types of burs to prepare the dentin surfaces. Flat coronal surfaces of 24 extracted human molars were produced using either regular-grit or superfine-grit diamond burs. Resin composite was then bonded to equal numbers of these surfaces using one of the four adhesives: Clearfil SE Bond (CSE), G-Bond (GB), SSB-200 (SSB) or Prompt L-Pop (PLP). After storage for 24 hours in 37 C distilled water, the bonded teeth were sectioned into slices (0.7-mm thick) perpendicular to the bonded surface. The specimens were then subjected to microtensile testing and the bond strengths were calculated at failure. Bond strength data were analyzed by two-way ANOVA and the Games-Howell test for interaction between adhesive and type of cut dentin. The fractured surfaces were observed by SEM to determine the failure mode. In addition, to observe the effect of conditioning, equal numbers of the two bur-cut dentin surfaces of eight additional teeth were conditioned with the adhesives and observed by SEM. Based on the results, when CSE and SSB were bonded to dentin cut with a regular-grit diamond bur, the MTBS values were significantly lower than that of superfine bur-cut dentin; whereas, GB and PLP showed no significant differences in MTBS between the two differently cut surfaces. SEM observation of the fractured surfaces revealed a mixed mode (adhesive in some areas and cohesive in others in the same sample) of failure in all specimens except PLP, which showed cohesive failure within the adhesive for both types of bur preparation. Generally, SEMs of the conditioned surfaces using both types of burs showed partial removal of the smear layer for CSE, minimal for GB and SSB and complete removal for PLP. In conclusion, when cutting dentin, selecting the proper bur type is important for improving the bond strength of some self-etching adhesive systems

    Clinicopathological impact of ABCC1/MRP1 and ABCC4/MRP4 in epithelial ovarian carcinoma

    Get PDF
    Ovarian cancer is the main cause of death from gynaecological malignancies. In spite of the efficacy of platinum-paclitaxel treatment in patients with primary epithelial ovarian carcinoma, platinum-based chemotherapy is not curative and resistance remains one of the most important causes of treatment failure. Although ABC transporters have been implicated in cellular resistance to multiple drugs, the clinical relevance of these efflux pumps is still poorly understood. Thus, we examined the prognostic role of transporters of the MRP family (i.e., ABCC1/MRP1, ABCC4/MRP4) to gain insights into their clinical impacts. A case material of 127 patients with ovarian carcinoma at different stages and histotypes was used. The expression of MRP1 and MRP4 was examined by immunohistochemistry using tissue microarrays in tumor specimens collected at the time of initial surgery expression. We found an association between MRP1 expression and grading, and we observed that MRP4 displayed an unfavourable impact on disease relapse in multivariate analysis (HR = 2.05, 95% CI: 1.01-4.11; P = 0.045). These results suggest that in epithelial ovarian cancer, MRP1 may be a marker for aggressiveness because its expression was associated with tumor grade and support that MRP4 may play an unfavourable role in disease outcome

    Unraveling the complexity of HRD assessment in ovarian cancer by combining genomic and functional approaches: translational analyses of MITO16-MaNGO-OV-2 trial

    Get PDF
    Background: Ovarian cancer (OvC) constitutes significant management challenges primarily due to its late-stage diagnosis and the development of resistance to chemotherapy. The standard treatment regimen typically includes carboplatin and paclitaxel, with the addition of poly (ADP-ribose) polymerase inhibitors for patients with high-grade serous ovarian cancer (HGSOC) harboring BRCA1/2 mutations. However, the variability in treatment responses suggests the need to investigate factors beyond BRCA1/2 mutations, such as DNA repair mechanisms and epigenetic alterations. Notably, homologous recombination repair deficiency (HRD) is observed in an additional 20% of HGSOC cases, indicating a broader spectrum of DNA repair defects. Existing commercial HRD assays have certain limitations, prompting a global effort to develop new genomic and functional tests through academic research. Materials and methods: This study investigates, in the 187 high-grade serous and endometrioid tumors from the MITO16/MaNGO-OV-2 trial, academic HRD genomic tests in conjunction with a RAD51 immunofluorescence assay to assess functional activation of HRD. Additionally, the study incorporates analysis of microRNA-506 (miR-506) expression as a putative epigenetic effector. Results: The RAD51 test identified HRD in 73% of the samples and genomic HRD testing in 57%, with HRD identified in 45% of samples by both tests. The significant discrepancy between the two assays emphasizes the need to refine tumor classification for HRD. A three-group genomic classification unveiled superior progression-free survival (PFS) in high- and mild-HRD tumors compared with negative-HRD tumors. High concordance between RAD51 and genomic testing in high-HRD tumors suggests a subset of 'super-HRD' tumors exhibiting superior PFS. High expression of miR-506 may be used to further refine HRD status. Conclusions: The study underscores the complexities of HRD assessment and advocates for a combined genomic and functional approach to enhance predictive accuracy in OvC treatment responses

    Unraveling the complexity of HRD assessment in ovarian cancer by combining genomic and functional approaches: translational analyses of MITO16-MaNGO-OV-2 trial

    Get PDF
    Background: Ovarian cancer (OvC) constitutes significant management challenges primarily due to its late-stage diagnosis and the development of resistance to chemotherapy. The standard treatment regimen typically includes carboplatin and paclitaxel, with the addition of poly (ADP-ribose) polymerase inhibitors for patients with high-grade serous ovarian cancer (HGSOC) harboring BRCA1/2 mutations. However, the variability in treatment responses suggests the need to investigate factors beyond BRCA1/2 mutations, such as DNA repair mechanisms and epigenetic alterations. Notably, homologous recombination repair deficiency (HRD) is observed in an additional 20% of HGSOC cases, indicating a broader spectrum of DNA repair defects. Existing commercial HRD assays have certain limitations, prompting a global effort to develop new genomic and functional tests through academic research. Materials and methods: This study investigates, in the 187 high-grade serous and endometrioid tumors from the MITO16/MaNGO-OV-2 trial, academic HRD genomic tests in conjunction with a RAD51 immunofluorescence assay to assess functional activation of HRD. Additionally, the study incorporates analysis of microRNA-506 (miR-506) expression as a putative epigenetic effector. Results: The RAD51 test identified HRD in 73% of the samples and genomic HRD testing in 57%, with HRD identified in 45% of samples by both tests. The significant discrepancy between the two assays emphasizes the need to refine tumor classification for HRD. A three-group genomic classification unveiled superior progression-free survival (PFS) in high- and mild-HRD tumors compared with negative-HRD tumors. High concordance between RAD51 and genomic testing in high-HRD tumors suggests a subset of ‘super-HRD’ tumors exhibiting superior PFS. High expression of miR-506 may be used to further refine HRD status. Conclusions: The study underscores the complexities of HRD assessment and advocates for a combined genomic and functional approach to enhance predictive accuracy in OvC treatment responses

    Gene Expression Profiles in Stage I Uterine Serous Carcinoma in Comparison to Grade 3 and Grade 1 Stage I Endometrioid Adenocarcinoma

    Get PDF
    Endometrial cancer is the most common gynecologic malignancy in the developed countries. Clinical studies have shown that early stage uterine serous carcinoma (USC) has outcomes similar to early stage high grade endometrioid adenocarcinoma (EAC-G3) than to early stage low grade endometrioid adenocarcinoma (EAC-G1). However, little is known about the origin of these different clinical outcomes. This study applied the whole genome expression profiling to explore the expression difference of stage I USC (n = 11) relative to stage I EAC-G3 (n = 11) and stage I EAC-G1 (n = 11), respectively.We found that the expression difference between USC and EAC-G3, as measured by the number of differentially expressed genes (DEGs), is consistently less than that found between USC and EAC-G1. Pathway enrichment analyses suggested that DEGs specific to USC vs. EAC-G3 are enriched for genes involved in signaling transduction, while DEGs specific to USC vs. EAC-G1 are enriched for genes involved in cell cycle. Gene expression differences for selected DEGs are confirmed by quantitative RT-PCR with a high validation rate.This data, although preliminary, indicates that stage I USC is genetically similar to stage I EAC-G3 compared to stage I EAC-G1. DEGs identified from this study might provide an insight in to the potential mechanisms that influence the clinical outcome differences between endometrial cancer subtypes. They might also have potential prognostic and therapeutic impacts on patients diagnosed with uterine cancer
    corecore