3,826 research outputs found
Application of special-purpose digital computers to rotorcraft real-time simulation
The use of an array processor as a computational element in rotorcraft real-time simulation is studied. A multilooping scheme was considered in which the rotor would loop over its calculations a number of time while the remainder of the model cycled once on a host computer. To prove that such a method would realistically simulate rotorcraft, a FORTRAN program was constructed to emulate a typical host-array processor computing configuration. The multilooping of an expanded rotor model, which included appropriate kinematic equations, resulted in an accurate and stable simulation
pp Wave Big Bangs: Matrix Strings and Shrinking Fuzzy Spheres
We find pp wave solutions in string theory with null-like linear dilatons.
These provide toy models of big bang cosmologies. We formulate Matrix String
Theory in these backgrounds. Near the big bang ``singularity'', the string
theory becomes strongly coupled but the Yang-Mills description of the matrix
string is weakly coupled. The presence of a second length scale allows us to
focus on a specific class of non-abelian configurations, viz. fuzzy cylinders,
for a suitable regime of parameters. We show that, for a class of pp waves,
fuzzy cylinders which start out big at early times dynamically shrink into
usual strings at sufficiently late times.Comment: 29 pages, ReVTeX and AMSLaTeX. 4 Figures. v2: Typo corrected and
reference adde
Cosmologies with Null Singularities and their Gauge Theory Duals
We investigate backgrounds of Type IIB string theory with null singularities
and their duals proposed in hep-th/0602107. The dual theory is a deformed N=4
Yang-Mills theory in 3+1 dimensions with couplings dependent on a light-like
direction. We concentrate on backgrounds which become AdS_5 x S^5 at early and
late times and where the string coupling is bounded, vanishing at the
singularity. Our main conclusion is that in these cases the dual gauge theory
is nonsingular. We show this by arguing that there exists a complete set of
gauge invariant observables in the dual gauge theory whose correlation
functions are nonsingular at all times. The two-point correlator for some
operators calculated in the gauge theory does not agree with the result from
the bulk supergravity solution. However, the bulk calculation is invalid near
the singularity where corrections to the supergravity approximation become
important. We also obtain pp-waves which are suitable Penrose limits of this
general class of solutions, and construct the Matrix Membrane theory which
describes these pp-wave backgrounds.Comment: 43 pages REVTeX and AMSLaTeX. v2: references adde
Arago (1810): the first experimental result against the ether
95 years before Special Relativity was born, Arago attempted to detect the
absolute motion of the Earth by measuring the deflection of starlight passing
through a prism fixed to the Earth. The null result of this experiment gave
rise to the Fresnel's hypothesis of an ether partly dragged by a moving
substance. In the context of Einstein's Relativity, the sole frame which is
privileged in Arago's experiment is the proper frame of the prism, and the null
result only says that Snell's law is valid in that frame. We revisit the
history of this premature first evidence against the ether theory and calculate
the Fresnel's dragging coefficient by applying the Huygens' construction in the
frame of the prism. We expose the dissimilar treatment received by the ray and
the wave front as an unavoidable consequence of the classical notions of space
and time.Comment: 16 pages. To appear in European Journal of Physic
Modern Michelson-Morley experiment using cryogenic optical resonators
We report on a new test of Lorentz invariance performed by comparing the
resonance frequencies of two orthogonal cryogenic optical resonators subject to
Earth's rotation over 1 year. For a possible anisotropy of the speed of light
c, we obtain 2.6 +/- 1.7 parts in 10^15. Within the Robertson-Mansouri-Sexl
test theory, this implies an isotropy violation parameter beta - delta - 1/2 of
-2.2 +/- 1.5 parts in 10^9, about three times lower than the best previous
result. Within the general extension of the standard model of particle physics,
we extract limits on 7 parameters at accuracies down to a part in 10^15,
improving the best previous result by about two orders of magnitude
Superconformal Black Hole Quantum Mechanics
In recent work, the superconformal quantum mechanics describing D0 branes in
the AdS_2xS^2xCY_3 attractor geometry of a Calabi-Yau black hole with D4 brane
charges p^A has been constructed and found to contain a large degeneracy of
chiral primary bound states. In this paper it is shown that the asymptotic
growth of chiral primaries for N D0 branes exactly matches the
Bekenstein-Hawking area law for a black hole with D4 brane charge p^A and D0
brane charge N. This large degeneracy arises from D0 branes in lowest Landau
levels which tile the CY_3xS^2 horizon. It is conjectured that such a multi-D0
brane CFT1 is holographically dual to IIA string theory on AdS_2xS^2xCY_3.Comment: 8 page
A connection with parallel totally skew-symmetric torsion on a class of almost hypercomplex manifolds with Hermitian and anti-Hermitian metrics
The subject of investigations are the almost hypercomplex manifolds with
Hermitian and anti-Hermitian (Norden) metrics. A linear connection D is
introduced such that the structure of these manifolds is parallel with respect
to D and its torsion is totally skew-symmetric. The class of the nearly Kaehler
manifolds with respect to the first almost complex structure is of special
interest. It is proved that D has a D-parallel torsion and is weak if it is not
flat. Some curvature properties of these manifolds are studied.Comment: 18 page
Potentials for hyper-Kahler metrics with torsion
We prove that locally any hyper-K\"ahler metric with torsion admits an HKT
potential.Comment: 9 page
Forecast Constraints on Inflation from Combined CMB and Gravitational Wave Direct Detection Experiments
We study how direct detection of the inflationary gravitational wave
background constrains inflationary parameters and complements CMB polarization
measurements. The error ellipsoids calculated using the Fisher information
matrix approach with Planck and the direct detection experiment, BBO (Big Bang
Observer), show different directions of parameter degeneracy, and the
degeneracy is broken when they are combined. For a slow-roll parameterization,
we show that BBO could significantly improve the constraints on the
tensor-to-scalar ratio compared with Planck alone. We also look at a quadratic
and a natural inflation model. In both cases, if the temperature of reheating
is also treated as a free parameter, then the addition of BBO can significantly
improve the error bars. In the case of natural inflation, we find that the
addition of BBO could even partially improve the error bars of a cosmic
variance-limited CMB experiment.Comment: 12 pages, 5 figures; matches version to appear in PRD; typos
correcte
- …
