77 research outputs found
Slip-partitioned surface ruptures for the Mw 7.0 16 April 2016 Kumamoto, Japan, earthquake
An ENE-trending ~30-km-long surface rupture emerged during the Mw = 7.0 16 April 2016 Kumamoto earthquake along the previously mapped Futagawa and northern Hinagu faults. This included a previously unknown 5-km-long fault within the Aso Caldera, central Kyushu. The rupture zone is mostly composed of right-lateral slip sections, with a maximum of 2-m coseismic slip. One of the noteworthy features we observed in the field are ~10-km-long segmented normal fault scarps, dipping to the northwest, along the previously mapped Idenokuchi fault, 1.2–2.0 km south of and subparallel to the Futagawa fault. The maximum amount of coseismic throw on the Idenokuchi fault is ~2 m, which is nearly equivalent to the maximum slip on the strike-slip rupture. The locations and slip motions of the 2016 rupture are also manifested as interferogram fringe offsets in InSAR images. Together with geodetic and seismic inversions of subsurface fault slip, we present a schematic structural model where oblique motion occurred on a northwest-dipping subsurface fault and the slip is partitioned at the surface into strike-slip and normal fault scarps. Our simple dislocation model demonstrates that this bifurcation into pure strike-slip and normal faults likely occurs for optimally oriented failure near the surface. The Kumamoto case, with detailed geological observations and geophysical models, would be the second significant slip-partitioned earthquake around the globe. It provides an important insight into scale- and depth-dependent stress heterogeneity and an implication to a proper estimate of seismic hazard in complex and broad multiple fault strands
The relationship between kinematics and fault geometry for surface coseismic ruptures on across-strike faults: New observations of slip vectors and displacements along the Pisia and Skinos faults from the 1981 Eastern Gulf of Corinth, Greece earthquakes
Out of phase Quaternary uplift-rate changes reveal normal fault interaction, implied by deformed marine palaeoshorelines
We have mapped and constrained the timing of tectonically deformed uplifted Late Quaternary palaeoshorelines in the Messina Strait, southern Italy, an area above a subduction zone containing active normal faults. The palaeoshorelines are preserved from up to thirteen Late Quaternary sea-level highstands, providing a record of the deformation over this timescale (~500 ka) for the Messina-Taormina Fault, the Reggio Calabria Fault and the Armo Fault. The palaeoshorelines reveal spatial patterns of uplift through time along the strike of these normal faults, and, given the across strike arrangement of the faults, also reveal how the contribution of each fault to the regional strain-rate progressed through time. The results reveal that the uplift rates mapped within the fault hangingwalls and footwalls were not constant through time, with a marked change in the location of strain accumulation at ~50 ka. The uplift rates, once converted into throw-rates, imply that the three faults comprised similar throw-rates prior to ~50 ka (in the range 0.77–0.96 mm/yr), with the Armo and Reggio Calabria faults then switching to lower rates (0.32 mm/yr and 0.33 mm/yr respectively), whilst the Messina-Taormina Fault accelerated to 2.34 mm/yr. The regional extension rate, gained by summing the implied heave rates across the three faults, was maintained through time despite this re-organisation of local strain accumulation at ~50 ka. We explain these out-of-phase fault throw-rate changes during the constant-rate regional extension conditions as due to interactions between these upper plate normal faults. We finally discuss how fault throw-rates changing through time may affect a long-term seismic hazard assessment within active normal fault systems
Millennial slip‐rates variability of along‐strike active faults in the Italian Southern Apennines revealed by cosmogenic 36Cl dating of fault scarps
We present slip versus time histories derived from in situ 36Cl cosmogenic dating for three active normal faults in the southern Apennines, Italy. In this region the total extensional strain is accommodated by either a small number of faults located across strike from each other or, in places, a single fault where no other
active faults exist across strike. We investigate how strain‐rates on individual faults vary through time in the context of the overall geometry of the fault system. The 36Cl results confirm that the San Gregorio Magno, Auletta, and Vallo di Diano faults were active in the Holocene, with each fault exhibiting alternating periods of
relatively rapid and slow, or even absence of, slip. During periods of rapid slip, lasting a few millennia, the faults accumulate up to ∼5 m of slip, which we interpret as earthquake clusters. At other times, the faults exhibit no slip for time periods lasting multiple millennia. The fluctuations in slip‐rates reveal the migration of activity between faults and out‐of‐phase behaviour. Such fluctuations have important consequences for tectonic evolution and crustal rheology, and in particular for hazard estimation because they introduce considerable variability and hence uncertainty in earthquake probability calculations
Editorial: Fifty Campbell systematic reviews relevant to the policy response to COVID-19
This is the final version. Available on open access from Wiley via the DOI in this recordNational Institute for Health Research (NIHR
Regional deformation and offshore crustal local faulting as combined processes to explain uplift through time constrained by investigating differentially-uplifted Late Quaternary palaeoshorelines: the foreland Hyblean Plateau, SE Sicily
Quaternary uplift is well documented in SE Sicily, a region prone to damaging seismic events, such as the 1693 “Val di Noto” Earthquake (Mw 7.4), the largest seismic event reported within the Italian Earthquake Catalogue, whose seismogenic source is still debated and, consequently, the long-term seismic hazard is poorly-understood. However, the spatial variation in the timing and rates of uplift are still debated, so it is difficult to link the dominant tectonic process(es) responsible for the uplift and the location of seismogenic sources. To better constrain the uplift rate, we have refined the dating of Late Quaternary marine terraces, using a synchronous correlation approach, driven by both published and newly obtained numerical age controls (234U/230Th dating on corals). This has allowed re-calculation of uplift rates along a N-S oriented transect within the Hyblean Plateau (HP) foreland region. Consequently, we have mapped the geometry of palaeoshorelines along a coastline-parallel transect, and hence the rates of uplift. The results suggest increasing uplift rate from south to north across the HP, and that uplift rates have remained constant through the late Quaternary. This spatially-changing but temporally constant uplift places constraints on the proportion of uplift produced by regional geodynamic processes versus produced by local faults, such as an offshore E-dipping active normal fault. We discuss these new findings in terms of the long-term seismic hazard for one of the most seismically-active regions in the Mediterranean Basin
Out of phase Quaternary uplift-rate changes reveal normal fault interaction, implied by deformed marine palaeoshorelines
We have mapped and constrained the timing of tectonically deformed uplifted Late Quaternary palaeoshorelines in the Messina Strait, southern Italy, an area above a subduction zone containing active normal faults. The palaeoshorelines are preserved from up to thirteen Late Quaternary sea-level highstands, providing a record of the deformation over this timescale (~500 ka) for the Messina-Taormina Fault, the Reggio Calabria Fault and the Armo Fault. The palaeoshorelines reveal spatial patterns of uplift through time along the strike of these normal faults, and, given the across strike arrangement of the faults, also reveal how the contribution of each fault to the regional strain-rate progressed through time. The results reveal that the uplift rates mapped within the fault hangingwalls and footwalls were not constant through time, with a marked change in the location of strain accumulation at ~50 ka. The uplift rates, once converted into throw-rates, imply that the three faults comprised similar throw-rates prior to ~50 ka (in the range 0.77–0.96 mm/yr), with the Armo and Reggio Calabria faults then switching to lower rates (0.32 mm/yr and 0.33 mm/yr respectively), whilst the Messina-Taormina Fault accelerated to 2.34 mm/yr. The regional extension rate, gained by summing the implied heave rates across the three faults, was maintained through time despite this re-organisation of local strain accumulation at ~50 ka. We explain these out-of-phase fault throw-rate changes during the constant-rate regional extension conditions as due to interactions between these upper plate normal faults. We finally discuss how fault throw-rates changing through time may affect a long-term seismic hazard assessment within active normal fault systems
Time series analysis of age related cataract hospitalizations and phacoemulsification
BACKGROUND: Cataract surgery remains a commonly performed elective surgical procedure in the aging and the elderly. The purpose of this study was to utilize time series methodology to determine the temporal and seasonal variations and the strength of the seasonality in age-related (senile) cataract hospitalizations and phacoemulsification surgeries. METHODS: A retrospective, cross-sectional time series analysis was used to assess the presence and strength of seasonal and temporal patterns of age-related cataract hospitalizations and phacoemulsification surgeries from April 1, 1991 to March 31, 2002. Hospital admission rates for senile cataract (n = 70,281) and phacoemulsification (n = 556,431) were examined to determine monthly rates of hospitalization per 100,000 population. Time series methodology was then applied to the monthly aggregates. RESULTS: During the study period, age-related cataract hospitalizations in Ontario have declined from approximately 40 per 100,000 to only one per 100,000. Meanwhile, the use of phacoemulsification procedures has risen dramatically. The study found evidence of biannual peaks in both procedures during the spring and autumn months, and summer and winter troughs. Statistical analysis revealed significant overall seasonal patterns for both age-related cataract hospitalizations and phacoemulsifications (p < 0.01). CONCLUSION: This study illustrates the decline in age-related cataract hospitalizations in Ontario resulting from the shift to outpatient phacoemulsification surgery, and demonstrates the presence of biannual peaks (a characteristic indicative of seasonality), in hospitalization and phacoemulsification during the spring and autumn throughout the study period
A database of the coseismic effects following the 30 October 2016 Norcia earthquake in Central Italy
We provide a database of the coseismic geological surface effects following the Mw 6.5 Norcia earthquake that hit central Italy on 30 October 2016. This was one of the strongest seismic events to occur in Europe in the past thirty years, causing complex surface ruptures over an area of >400 km 2. The database originated from the collaboration of several European teams (Open EMERGEO Working Group; about 130 researchers) coordinated by the Istituto Nazionale di Geofisica e Vulcanologia. The observations were collected by performing detailed field surveys in the epicentral region in order to describe the geometry and kinematics of surface faulting, and subsequently of landslides and other secondary coseismic effects. The resulting database consists of homogeneous georeferenced records identifying 7323 observation points, each of which contains 18 numeric and string fields of relevant information. This database will impact future earthquake studies focused on modelling of the seismic processes in active extensional settings, updating probabilistic estimates of slip distribution, and assessing the hazard of surface faulting
Coulomb pre-stress and fault bends are ignored yet vital factors for earthquake triggering and hazard
Successive locations of individual large earthquakes (Mw>5.5) over years to centuries can be difficult to explain with simple Coulomb Stress Transfer (CST) because it is common for seismicity to circumvent nearest-neighbour along-strike faults where coseismic CST is greatest. We demonstrate that Coulomb pre-stress (the cumulative CST from multiple earthquakes and interseismic loading on non-planar faults) may explain this, evidenced by study of a 667-year historical record of earthquakes in central Italy. Heterogeneity in Coulomb pre-stresses across the fault system is >±50 bars, whereas coseismic CST is <±2 bars, so the latter will rarely overwhelm the former, explaining why historical earthquakes rarely rupture nearest neighbor faults. However, earthquakes do tend to occur where the cumulative coseismic and interseismic CST is positive, although there are notable examples where earthquake propagate across negatively stressed portions of faults. Hence Coulomb pre-stress calculated for non-planar faults is an ignored yet vital factor for earthquake triggering
- …
