696 research outputs found
Mode-specific directional emission from hybridized particle-on-a-film plasmons
We investigate the electromagnetic interaction between a gold nanoparticle and a thin gold film on a glass substrate. The coupling between the particle plasmons and the surface plasmon polaritons of the film leads to the formation of two localized hybrid modes, one low-energy. film-like. plasmon and one high-energy plasmon dominated by the nanoparticle. We find that the two modes have completely different directional scattering patterns on the glass side of the film. The high-energy mode displays a characteristic dipole emission pattern while the low-energy mode sends out a substantial part of its radiation in directions parallel to the particle dipole moment. The relative strength of the two radiation patterns vary strongly with the distance between the particle and the film, as determined by the degree of particle-film hybridization
Plasmon-Interband Coupling in Nickel Nanoantennas
Plasmonic excitations are usually attributed to the free electron response at visible frequencies in the classic plasmonic metals Au and Ag. However, the vast majority of metals exhibit spectrally localized interband transitions or broad interband transition backgrounds in the energy range of interest for nanoplasmonics. Nevertheless, the interaction of interband transitions with localized plasmons in optical nanoantennas has hitherto received relatively little attention, probably because interband transitions are regarded as highly unwanted due to their strong damping effect on the localized plasmons. However, with an increasing number of metals (beyond Au and Ag) being considered for nanoplasmonic applications such as hydrogen sensing (Pd), UV-SERS (Al), or magnetoplasmonics (Ni, Fe, Co), a deeper conceptual understanding of the interactions between a localized plasmon mode and an interband transition is very important. Here, as a generic example, we examine the interaction of a localized (in energy space) interband transition with spectrally tunable localized plasmonic excitations and unearth the underlying physics in a phenomenological approach for the case of Ni disk nanoantennas. We find that plasmon interband interactions can be understood in the classical picture of two coupled harmonic oscillators, exhibiting the typical energy anticrossing fingerprint of a coupled system approaching the strong-coupling regime
Electrostatic charging of jumping droplets
With the broad interest in and development of superhydrophobic surfaces for self-cleaning, condensation heat transfer enhancement and anti-icing applications, more detailed insights on droplet interactions on these surfaces have emerged. Specifically, when two droplets coalesce, they can spontaneously jump away from a superhydrophobic surface due to the release of excess surface energy. Here we show that jumping droplets gain a net positive charge that causes them to repel each other mid-flight. We used electric fields to quantify the charge on the droplets and identified the mechanism for the charge accumulation, which is associated with the formation of the electric double layer at the droplet–surface interface. The observation of droplet charge accumulation provides insight into jumping droplet physics as well as processes involving charged liquid droplets. Furthermore, this work is a starting point for more advanced approaches for enhancing jumping droplet surface performance by using external electric fields to control droplet jumping.United States. Dept. of Energy. Office of Basic Energy Sciences (Solid-State Solar-Thermal Energy Conversion Center Award DE-FG02-09ER46577)United States. Office of Naval ResearchNational Science Foundation (U.S.) (Major Research Instrumentation Grant for Rapid Response Research (MRI- RAPID))National Science Foundation (U.S.) (Award ECS-0335765)National Science Foundation (U.S.). Graduate Research Fellowship Program (Grant 1122374
Eight common genetic variants associated with serum dheas levels suggest a key role in ageing mechanisms
Dehydroepiandrosterone sulphate (DHEAS) is the most abundant circulating steroid secreted by adrenal glands-yet its function is unknown. Its serum concentration declines significantly with increasing age, which has led to speculation that a relative DHEAS deficiency may contribute to the development of common age-related diseases or diminished longevity. We conducted a meta-analysis of genome-wide association data with 14,846 individuals and identified eight independent common SNPs associated with serum DHEAS concentrations. Genes at or near the identified loci include ZKSCAN5 (rs11761528; p = 3.15×10-36), SULT2A1 (rs2637125; p = 2.61×10-19), ARPC1A (rs740160; p = 1.56×10-16), TRIM4 (rs17277546; p = 4.50×10-11), BMF (rs7181230; p = 5.44×10-11), HHEX (rs2497306; p = 4.64×10-9), BCL2L11 (rs6738028; p = 1.72×10-8), and CYP2C9 (rs2185570; p = 2.29×10-8). These genes are associated with type 2 diabetes, lymphoma, actin filament assembly, drug and xenobiotic metabolism, and zinc finger proteins. Several SNPs were associated with changes in gene expression levels, and the related genes are connected to biological pathways linking DHEAS with ageing. This study provides much needed insight into the function of DHEAS
Opposing Effects of Omega-3 and Omega-6 Long Chain Polyunsaturated Fatty Acids on the Expression of Lipogenic Genes in Omental and Retroperitoneal Adipose Depots in the Rat
This study aimed to determine the effect of varying dietary intake of the major n-3 PUFA in human diets, α-linolenic acid (ALA; 18 : 3n-3), on expression of lipogenic genes in adipose tissue. Rats were fed diets containing from 0.095%en to 6.3%en ALA and a constant n-6 PUFA level for 3 weeks. Samples from distinct adipose depots (omental and retroperitoneal) were collected and mRNA expression of the pro-lipogenic transcription factors Sterol-Retinoid-Element-Binding-Protein1c (SREBP1c) and Peroxisome Proliferator Activated Receptor-γ (PPARγ), lipogenic enzymes Sterol-coenzyme Desaturase1 (SCD-1), Fatty Acid Synthase (FAS), lipoprotein lipase (LPL) and glycerol-3-phosphate dehydrogenase (G3PDH) and adipokines leptin and adiponectin determined by qRT-PCR. Increasing dietary ALA content resulted in altered expression of SREBP1c, FAS and G3PDH mRNA in both adipose depots. SREBP1c mRNA expression was related directly to n-6 PUFA concentrations (omental, r2 = .71; P < .001; Retroperitoneal, r2 = .20; P < .002), and inversely to n-3 PUFA concentrations (omental, r2 = .59; P < .001; Retroperitoneal, r2 = .19; P < .005) independent of diet. The relationship between total n-6 PUFA and SREBP1c mRNA expression persisted when the effects of n-3 PUFA were controlled for. Altering red blood cell concentrations of n-3 PUFA is thus associated with altered expression of lipogenic genes in a depot-specific manner and this effect is modulated by prevailing n-6 PUFA concentrations
On the early and developed stages of surface condensation: competition mechanism between interfacial and condensate bulk thermal resistances
Financial supports from the National Natural Science Foundation of China (51406205), the Beijing Natural Science Foundation (3142021) and the Engineering and Physics Science Research Council (EPSRC) of the UK (EP/L001233/1) are acknowledged.Financial supports from the National Natural Science Foundation of China (51406205), the Beijing Natural Science Foundation (3142021) and the Engineering and Physics Science Research Council (EPSRC) of the UK (EP/L001233/1) are acknowledged.Financial supports from the National Natural Science Foundation of China (51406205), the Beijing Natural Science Foundation (3142021) and the Engineering and Physics Science Research Council (EPSRC) of the UK (EP/L001233/1) are acknowledged.We use molecular dynamics simulation to investigate the early and developed stages of surface condensation. We find that the liquid-vapor and solid-liquid interfacial thermal resistances depend on the properties of solid and fluid, which are time-independent, while the condensate bulk thermal resistance depends on the condensate thickness, which is time-dependent. There exists intrinsic competition between the interfacial and condensate bulk thermal resistances in timeline and the resultant total thermal resistance determines the condensation intensity for a given vapor-solid temperature difference. We reveal the competition mechanism that the interfacial thermal resistance dominates at the onset of condensation and holds afterwards while the condensate bulk thermal resistance gradually takes over with condensate thickness growing. The weaker the solid-liquid bonding, the later the takeover occurs. This competition mechanism suggests that only when the condensate bulk thermal resistance is reduced after it takes over the domination can the condensation be effectively intensified. We propose a unified theoretical model for the thermal resistance analysis by making dropwise condensation equivalent to filmwise condensation. We further find that near a critical point (contact angle being ca. 153°) the bulk thermal resistance has the least opportunity to take over the domination while away from it the probability increases.Financial supports from the National Natural Science Foundation of China (51406205), the Beijing Natural Science Foundation (3142021) and the Engineering and Physics Science Research Council (EPSRC) of the UK (EP/L001233/1) are acknowledged
Genetic association study of adiposity and melanocortin-4 receptor (MC4R) common variants: Replication and functional characterization of non-coding regions
Common genetic variants 3′ of MC4R within two large linkage disequilibrium (LD) blocks spanning 288 kb have been associated with common and rare forms of obesity. This large association region has not been refined and the relevant DNA segments within the association region have not been identified. In this study, we investigated whether common variants in the MC4R gene region were associated with adiposity-related traits in a biracial population-based study. Single nucleotide polymorphisms (SNPs) in the MC4R region were genotyped with a custom array and a genome-wide array and associations between SNPs and five adiposity-related traits were determined using race-stratified linear regression. Previously reported associations between lower BMI and the minor alleles of rs2229616/Val103Ile and rs52820871/Ile251Leu were replicated in white female participants. Among white participants, rs11152221 in a proximal 3′ LD block (closer to MC4R) was significantly associated with multiple adiposity traits, but SNPs in a distal 309 LD block (farther from MC4R ) were not. In a case-control study of severe obesity, rs11152221 was significantly associated. The association results directed our follow-up studies to the proximal LD block downstream of MC4R. By considering nucleotide conservation, the significance of association, and proximity to the MC4R gene, we identified a candidate MC4R regulatory region. This candidate region was sequenced in 20 individuals from a study of severe obesity in an attempt to identify additional variants, and the candidate region was tested for enhancer activity using in vivo enhancer assays in zebrafish and mice. Novel variants were not identified by sequencing and the candidate region did not drive reporter gene expression in zebrafish or mice. The identification of a putative insulator in this region could help to explain the challenges faced in this study and others to link SNPs associated with adiposity to altered MC4R expression. © 2014 Evans et al
Trans-ethnic Meta-analysis and Functional Annotation Illuminates the Genetic Architecture of Fasting Glucose and Insulin
Knowledge of the genetic basis of the type 2 diabetes (T2D)-related quantitative traits fasting glucose (FG) and insulin (FI) in African ancestry (AA) individuals has been limited. In non-diabetic subjects of AA (n = 20,209) and European ancestry (EA; n = 57,292), we performed trans-ethnic (AA+EA) fine-mapping of 54 established EA FG or FI loci with detailed functional annotation, assessed their relevance in AA individuals, and sought previously undescribed loci through trans-ethnic (AA+EA) meta-analysis. We narrowed credible sets of variants driving association signals for 22/54 EA-associated loci; 18/22 credible sets overlapped with active islet-specific enhancers or transcription factor (TF) binding sites, and 21/22 contained at least one TF motif. Of the 54 EA-associated loci, 23 were shared between EA and AA. Replication with an additional 10,096 AA individuals identified two previously undescribed FI loci, chrX FAM133A (rs213676) and chr5 PELO (rs6450057). Trans-ethnic analyses with regulatory annotation illuminate the genetic architecture of glycemic traits and suggest gene regulation as a target to advance precision medicine for T2D. Our approach to utilize state-of-the-art functional annotation and implement trans-ethnic association analysis for discovery and fine-mapping offers a framework for further follow-up and characterization of GWAS signals of complex trait loc
- …
