4,764 research outputs found

    Impact of rod projectiles against multiple- sheet targets

    Get PDF
    Blunt hypervelocity projectile lift-drag ratio and impact velocity effects on target penetration and impact damag

    Phase Closure Nulling: results from the 2009 campaign

    Get PDF
    We present here a new observational technique, Phase Closure Nulling (PCN), which has the potential to obtain very high contrast detection and spectroscopy of faint companions to bright stars. PCN consists in measuring closure phases of fully resolved objects with a baseline triplet where one of the baselines crosses a null of the object visibility function. For scenes dominated by the presence of a stellar disk, the correlated flux of the star around nulls is essentially canceled out, and in these regions the signature of fainter, unresolved, scene object(s) dominates the imaginary part of the visibility in particular the closure phase. We present here the basics of the PCN method, the initial proof-of-concept observation, the envisioned science cases and report about the first observing campaign made on VLTI/AMBER and CHARA/MIRC using this technique.Comment: To be published in the proceedings of the SPIE'2010 conference on "Optical and Infrared Interferometry II

    Mid-infrared size survey of Young Stellar Objects: Description of Keck segment-tilting experiment and basic results

    Full text link
    The mid-infrared properties of pre-planetary disks are sensitive to the temperature and flaring profiles of disks for the regions where planet formation is expected to occur. In order to constrain theories of planet formation, we have carried out a mid-infrared (wavelength 10.7 microns) size survey of young stellar objects using the segmented Keck telescope in a novel configuration. We introduced a customized pattern of tilts to individual mirror segments to allow efficient sparse-aperture interferometry, allowing full aperture synthesis imaging with higher calibration precision than traditional imaging. In contrast to previous surveys on smaller telescopes and with poorer calibration precision, we find most objects in our sample are partially resolved. Here we present the main observational results of our survey of 5 embedded massive protostars, 25 Herbig Ae/Be stars, 3 T Tauri stars, 1 FU Ori system, and 5 emission-line objects of uncertain classification. The observed mid-infrared sizes do not obey the size-luminosity relation found at near-infrared wavelengths and a companion paper will provide further modelling analysis of this sample. In addition, we report imaging results for a few of the most resolved objects, including complex emission around embedded massive protostars, the photoevaporating circumbinary disk around MWC 361A, and the subarcsecond binaries T Tau, FU Ori and MWC 1080.Comment: Accepted by Astrophysical Journal. 38 pages. 9 figure

    A molecular basis for selective antagonist destabilization of dopamine D3 receptor quaternary organization

    Get PDF
    The dopamine D3 receptor (D3R) is a molecular target for both first-generation and several recently-developed antipsychotic agents. Following stable expression of this mEGFP-tagged receptor, Spatial Intensity Distribution Analysis indicated that a substantial proportion of the receptor was present within dimeric/oligomeric complexes and that increased expression levels of the receptor favored a greater dimer to monomer ratio. Addition of the antipsychotics, spiperone or haloperidol, resulted in re-organization of D3R quaternary structure to promote monomerization. This action was dependent on ligand concentration and reversed upon drug washout. By contrast, a number of other antagonists with high affinity at the D3R, did not alter the dimer/monomer ratio. Molecular dynamics simulations following docking of each of the ligands into a model of the D3R derived from the available atomic level structure, and comparisons to the receptor in the absence of ligand, were undertaken. They showed that, in contrast to the other antagonists, spiperone and haloperidol respectively increased the atomic distance between reference α carbon atoms of transmembrane domains IV and V and I and II, both of which provide key interfaces for D3R dimerization. These results offer a molecular explanation for the distinctive ability of spiperone and haloperidol to disrupt D3R dimerization

    Strong Near-Infrared Emission Interior to the Dust-Sublimation Radius of Young Stellar Objects MWC275 and AB Aur

    Get PDF
    Using the longest optical-interferometeric baselines currently available, we have detected strong near-infrared (NIR) emission from inside the dust-destruction radius of Herbig Ae stars MWC275 and AB Aur. Our sub-milli-arcsecond resolution observations unambiguously place the emission between the dust-destruction radius and the magnetospheric co-rotation radius. We argue that this new component corresponds to hot gas inside the dust-sublimation radius, confirming recent claims based on spectrally-resolved interferometry and dust evaporation front modeling.Comment: 12 pages, 4 figures, Accepted for publication in ApJ

    The effect of prolonged simulated non- gravitational environment on mineral balance in the adult male, volume 1 Final report

    Get PDF
    Effect of prolonged bed rest with simulated weightlessness on mineral balance in male adult - Vol.

    Magnetically-induced ferroelectricity in the (ND4)2[FeCl5(D2O)] molecular compound

    Get PDF
    The number of magnetoelectric multiferroic materials reported to date is scarce, as magnetic structures that break inversion symmetry and induce an improper ferroelectric polarization typically arise through subtle competition between different magnetic interactions. The (NH4)2[FeCl5(H2O)] compound is a rare case where such improper ferroelectricity has been observed in a molecular material. We have used single crystal and powder neutron diffraction to obtain detailed solutions for the crystal and magnetic structures of (NH4)2[FeCl5(H2O)], from which we determined the mechanism of multiferroicity. From the crystal structure analysis, we observed an order-disorder phase transition related to the ordering of the ammonium counterion. We have determined the magnetic structure below TN, at 2K and zero magnetic field, which corresponds to a cycloidal spin arrangement with magnetic moments contained in the ac-plane, propagating parallel to the c-axis. The observed ferroelectricity can be explained, from the obtained magnetic structure, via the inverse Dzyaloshinskii-Moriya mechanism

    Non-linear response of single-molecule magnets: field-tuned quantum-to-classical crossovers

    Get PDF
    Quantum nanomagnets can show a field dependence of the relaxation time very different from their classical counterparts, due to resonant tunneling via excited states (near the anisotropy barrier top). The relaxation time then shows minima at the resonant fields H_{n}=n D at which the levels at both sides of the barrier become degenerate (D is the anisotropy constant). We showed that in Mn12, near zero field, this yields a contribution to the nonlinear susceptibility that makes it qualitatively different from the classical curves [Phys. Rev. B 72, 224433 (2005)]. Here we extend the experimental study to finite dc fields showing how the bias can trigger the system to display those quantum nonlinear responses, near the resonant fields, while recovering an classical-like behaviour for fields between them. The analysis of the experiments is done with heuristic expressions derived from simple balance equations and calculations with a Pauli-type quantum master equation.Comment: 4 pages, 3 figures. Submitted to Phys. Rev. B, brief report
    corecore