228 research outputs found

    The ϕ6 Cystovirus Protein P7 Becomes Accessible to Antibodies in the Transcribing Nucleocapsid: A Probe for Viral Structural Elements

    Full text link
    Protein P7 is a component of the cystovirus viral polymerase complex. In the unpackaged procapsid, the protein is situated in close proximity to the viral directed RNA polymerase, P2. Cryo-electron microscopy difference maps from the species ϕ6 procapsid have demonstrated that P7 and P2 likely interact prior to viral RNA packaging. The location of P7 in the post-packaged nucleocapsid (NC) remains unknown. P7 may translocate closer to the five-fold axis of a filled procapsid but this has not been directly visualized. We propose that monoclonal antibodies (Mabs) can be selected that serve as probe- reagents for viral assembly and structure. A set of Mabs have been isolated that recognize and bind to the ϕ6 P7. The antibody set contains five unique Mabs, four of which recognize a linear epitope and one which recognizes a conformational epitope. The four unique Mabs that recognize a linear epitope display restricted utilization of Vκ and VH genes. The restricted genetic range among 4 of the 5 antibodies implies that the antibody repertoire is limited. The limitation could be the consequence of a paucity of exposed antigenic sites on the ϕ6 P7 surface. It is further demonstrated that within ϕ6 nucleocapsids that are primed for early-phase transcription, P7 is partially accessible to the Mabs, indicating that the nucleocapsid shell (protein P8) has undergone partial disassembly exposing the protein’s antigenic sites

    Reinitiated viral RNA-dependent RNA polymerase resumes replication at a reduced rate

    Get PDF
    RNA-dependent RNA polymerases (RdRP) form an important class of enzymes that is responsible for genome replication and transcription in RNA viruses and involved in the regulation of RNA interference in plants and fungi. The RdRP kinetics have been extensively studied, but pausing, an important regulatory mechanism for RNA polymerases that has also been implicated in RNA recombination, has not been considered. Here, we report that RdRP experience a dramatic, long-lived decrease in its elongation rate when it is reinitiated following stalling. The rate decrease has an intriguingly weak temperature dependence, is independent of both the nucleotide concentration during stalling and the length of the RNA transcribed prior to stalling; however it is sensitive to RNA structure. This allows us to delineate the potential factors underlying this irreversible conversion of the elongation complex to a less active mode

    Recombination in West Nile Virus: minimal contribution to genomic diversity

    Get PDF
    Recombination is known to play a role in the ability of various viruses to acquire sequence diversity. We consequently examined all available West Nile virus (WNV) whole genome sequences both phylogenetically and with a variety of computational recombination detection algorithms. We found that the number of distinct lineages present on a phylogenetic tree reconstruction to be identical to the 6 previously reported. Statistically-significant evidence for recombination was only observed in one whole genome sequence. This recombination event was within the NS5 polymerase coding region. All three viruses contributing to the recombination event were originally isolated in Africa at various times, with the major parent (SPU116_89_B), minor parent (KN3829), and recombinant sequence (AnMg798) belonging to WNV taxonomic lineages 2, 1a, and 2 respectively. This one isolated recombinant genome was out of a total of 154 sequences analyzed. It therefore does not seem likely that recombination contributes in any significant manner to the overall sequence variation within the WNV genome

    ELECTRONIC TRADING PLATFORMS IN RUSSIA

    Full text link

    Professional learning in an era of continuous education change

    No full text
    Educational reforms of the twenty-first century across the globe, including in the Pacific Island countries, have targeted education of quality and equity with a particular focus on improving learning outcomes of students and developing skills for the current work demands. What is expected of teachers in this new millennium? Teachers are expected to teach in an increasingly multicultural classroom with students from diverse backgrounds and to place greater emphasis on students with special learning needs. They are also expected to make effective use of information and communications technology in their teaching for more active engagement in the classrooms, plan for their teaching and accountability frameworks, and involve parents more in their children’s education. Despite high-quality pre-service training of teachers, this cannot be expected to prepare teachers for the challenges they will face in this era of continuous change in the education system. Teaching is a complex and dynamic profession that requires highly specialized skills and knowledge to impact significantly on student learning outcomes. Education systems therefore need to provide teachers with opportunities for professional learning in order to maintain a high standard of learning and teaching. Given the current prevalence of teacher professional learning to enhance student achievement, this entry argues that professional learning plays a significant role in the sustainability of education change. While professional learning and development provide a golden opportunity for teachers to learn and model innovative and creative teaching practices, it should not be a one-size fits-all approach but a multidimensional approach to meet teachers’ needs and interests

    Structure of the lipid-containing bacteriophage PRD1: disruption of wild-type and nonsense mutant phage particles with guanidine hydrochloride

    Full text link
    The lipid-containing bacteriophage PRD1 was disrupted, and the subviral particles were studied. Guanidine treatment released two phage proteins (P3 and P5). These proteins form the polyhedral capsid. The remaining phage proteins were associated with the phage membrane vesicle. The vesicle was capable of forming a tubular structure. The isolated phage membrane vesicles aggregated readily. We found that aggregation and tube formation were associated with specific phage proteins (P11 and P18, respectively) by using protease treatment and an analysis of nonsense mutant phage particles. In addition, the possibility that free vesicles might be precursors to empty virions was studied.</jats:p
    corecore