279 research outputs found

    Can sowing density facilitate a higher level of forb abundance, biomass, and richness in urban, perennial “wildflower” meadows?

    Get PDF
    Forb species abundance and richness determine both ecological and social values in naturalistic meadows in urban landscapes. However, species loss and dominance through competition are naturally part of meadow ecological processes often leading on productive soils to large grass biomass in the absence of appropriate management. Sowing density is a design tool to manipulate the initial number of emergents of each component species however high sowing densities may not benefit community performance in terms of species richness and diversity in the longer term. This study investigated the effect of sowing density on forb species abundance, biomass and richness. Two sowing densities approximating to 500 and 1,000 emerged seedlings/m2 were employed with 29 forb and one grass species. The higher sowing density did not lead to a larger grass biomass that dominated the community, as the grass species used was ultimately less competitive than the forb dominants. Increasing sowing density increased the number of forb seedlings initially but this declined, as did species richness in the longer term. In terms of subordinate forb survival, ability to access light resources to survive intense competition from dominants was key. Tall, and native species were more likely to maintain higher seedling numbers in the longer term. The research suggest that lower sowing rates are likely to be most useful on soils which are either unproductive, do not contain a significant weed seed banks, where weed free sowing mulches are employed or in rural situations where there is less immediate political pressure for rapid development of forb rich meadows.</p

    Dense matter with eXTP

    Full text link
    In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry (eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be replicated in a terrestrial laboratory. The tightest statistical constraints on the dense matter equation of state will come from pulse profile modelling of accretion-powered pulsars, burst oscillation sources, and rotation-powered pulsars. Additional constraints will derive from spin measurements, burst spectra, and properties of the accretion flows in the vicinity of the neutron star. Under development by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Science, the eXTP mission is expected to be launched in the mid 2020s.Comment: Accepted for publication on Sci. China Phys. Mech. Astron. (2019

    Diving with Penguins: Detecting Penguins and their Prey in Animal-borne Underwater Videos via Deep Learning

    Full text link
    African penguins (Spheniscus demersus) are an endangered species. Little is known regarding their underwater hunting strategies and associated predation success rates, yet this is essential for guiding conservation. Modern bio-logging technology has the potential to provide valuable insights, but manually analysing large amounts of data from animal-borne video recorders (AVRs) is time-consuming. In this paper, we publish an animal-borne underwater video dataset of penguins and introduce a ready-to-deploy deep learning system capable of robustly detecting penguins ([email protected]%) and also instances of fish ([email protected]%). We note that the detectors benefit explicitly from air-bubble learning to improve accuracy. Extending this detector towards a dual-stream behaviour recognition network, we also provide the first results for identifying predation behaviour in penguin underwater videos. Whilst results are promising, further work is required for useful applicability of predation behaviour detection in field scenarios. In summary, we provide a highly reliable underwater penguin detector, a fish detector, and a valuable first attempt towards an automated visual detection of complex behaviours in a marine predator. We publish the networks, the DivingWithPenguins video dataset, annotations, splits, and weights for full reproducibility and immediate usability by practitioners.Comment: 5 pages, 5 figures, 4 Tables, "3rd International Workshop on Camera traps, AI, and Ecology (CamTrapAI)

    Design and validation of a wide area monitoring and control system for fast frequency response

    Get PDF
    This paper presents the design and validation of a Wide Area Monitoring and Control (WAMC) system for Fast Frequency Response (FFR) to address the challenges associated with reduced and non-uniformly distributed inertia in power systems. The WAMC system, designed for the power system in Great Britain, is termed "Enhanced Frequency Control Capability (EFCC)". It uses real time measurements from Phasor Measurement Units (PMUs) to monitor the system state in order to rapidly detect frequency disturbances and evaluate the magnitude of power imbalances. The impact of the disturbances on different parts of the network is considered to subsequently allocate the required response for different regions of the network, all within less than one second from the initiating event. The capabilities and characteristics of different resources (e.g. wind, energy storage, demand, etc.) are also evaluated and taken into account to achieve a suitable, optimized and coordinated response. Case studies using highly realistic hardware-in-the-loop setups are presented and these demonstrate that the proposed system is capable of detecting frequency events and deploying appropriate and coordinated responses in a timely fashion even with degraded communication conditions, thereby effectively enhancing the frequency control in future low-inertia systems and permitting higher penetrations of low-carbon and low-inertia energy sources

    The Membrane-Associated Proteins FCHo and SGIP Are Allosteric Activators of the AP2 Clathrin Adaptor Complex

    Get PDF
    The AP2 clathrin adaptor complex links protein cargo to the endocytic machinery but it is unclear how AP2 is activated on the plasma membrane. Here we demonstrate that the membrane-associated proteins FCHo and SGIP1 convert AP2 into an open, active conformation. We screened for C. elegans mutants that phenocopy the loss of AP2 subunits and found that AP2 remains inactive in fcho-1 mutants. A subsequent screen for bypass suppressors of fcho-1 nulls identified 71 compensatory mutations in all four AP2 subunits. Using a protease-sensitivity assay we show that these mutations restore the open conformation in vivo. The domain of FCHo that induces this rearrangement is not the F-BAR domain or the mu-homology domain, but rather is an uncharacterized 90 amino acid motif, found in both FCHo and SGIP proteins, that directly binds AP2. Thus, these proteins stabilize nascent endocytic pits by exposing membrane and cargo binding sites on AP2

    Analysis of the London penetration depth in Ni-doped CaKFe4 As4

    Get PDF
    We report combined experimental and theoretical analysis of superconductivity in CaK(Fe1−xNix)4As4 (CaK1144) for x=0, 0.017, and 0.034. To obtain the superfluid density ρ=[1+ΔλL(T)/λL(0)]−2, the temperature dependence of the London penetration depth ΔλL(T) was measured by using a tunnel-diode resonator (TDR) and the results agreed with the microwave coplanar resonator (MWR) with the small differences accounted for by considering a three orders of magnitude higher frequency of MWR. The absolute value of λL(T≪Tc)≈λL(0) was measured by using MWR, λL(5K)≈170±20 nm, which agreed well with the NV centers in diamond optical magnetometry that gave λL(5K)≈196±12 nm, which agreed well with the NV centers in diamond optical magnetometry that gave λL(5K)≈196±12 nm. The experimental results are analyzed within the Eliashberg theory, showing that the superconductivity of CaK1144 is well described by the nodeless s± order parameter and that upon Ni doping the interband interaction increases

    Block copolymer synthesis in ionic liquid via polymerisation-induced self-assembly: A convenient route to gel electrolytes

    Get PDF
    We report for the first time a reversible addition–fragmentation chain transfer polymerisation-induced self-assembly (RAFT-PISA) formulation in ionic liquid (IL) that yields worm gels. A series of poly(2-hydroxyethyl methacrylate)-b-poly(benzyl methacrylate) (PHEMA-b-PBzMA) block copolymer nanoparticles were synthesised via RAFT dispersion polymerisation of benzyl methacrylate in the hydrophilic IL 1-ethyl-3-methyl imidazolium dicyanamide, [EMIM][DCA]. This RAFT-PISA formulation can be controlled to afford spherical, worm-like and vesicular nano-objects, with free-standing gels being obtained over a broad range of PBzMA core-forming degrees of polymerisation (DPs). High monomer conversions (≥96%) were obtained within 2 hours for all PISA syntheses as determined by 1H NMR spectroscopy, and good control over molar mass was confirmed by gel permeation chromatography (GPC). Nanoparticle morphologies were identified using small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM), and further detailed characterisation was conducted to monitor rheological, electrochemical and thermal characteristics of the nanoparticle dispersions to assess their potential in future electronic applications. Most importantly, this new PISA formulation in IL facilitates the in situ formation of worm ionogel electrolyte materials at copolymer concentrations >4% w/w via efficient and convenient synthesis routes without the need for organic co-solvents or post-polymerisation processing/purification. Moreover, we demonstrate that the worm ionogels developed in this work exhibit comparable electrochemical properties and thermal stability to that of the IL alone, showcasing their potential as gel electrolytes

    Synthetic chromosome fusion: Effects on mitotic and meiotic genome structure and function

    Get PDF
    We designed and synthesized synI, which is ~21.6% shorter than native chrI, the smallest chromosome in Saccharomyces cerevisiae. SynI was designed for attachment to another synthetic chromosome due to concerns surrounding potential instability and karyotype imbalance and is now attached to synIII, yielding the first synthetic yeast fusion chromosome. Additional fusion chromosomes were constructed to study nuclear function. ChrIII-I and chrIX-III-I fusion chromosomes have twisted structures, which depend on silencing protein Sir3. As a smaller chromosome, chrI also faces special challenges in assuring meiotic crossovers required for efficient homolog disjunction. Centromere deletions into fusion chromosomes revealed opposing effects of core centromeres and pericentromeres in modulating deposition of the crossover-promoting protein Red1. These effects extend over 100 kb and promote disproportionate Red1 enrichment, and thus crossover potential, on small chromosomes like chrI. These findings reveal the power of synthetic genomics to uncover new biology and deconvolute complex biological systems  </p

    CD5 Expression by Dendritic Cells Directs T Cell Immunity and Sustains Immunotherapy Responses

    Get PDF
    The induction of proinflammatory T cells by dendritic cell (DC) subtypes is critical for antitumor responses and effective immune checkpoint blockade (ICB) therapy. Here, we show that human CD1c+CD5+ DCs are reduced in melanoma-affected lymph nodes, with CD5 expression on DCs correlating with patient survival. Activating CD5 on DCs enhanced T cell priming and improved survival after ICB therapy. CD5+ DC numbers increased during ICB therapy, and low interleukin-6 (IL-6) concentrations promoted their de novo differentiation. Mechanistically, CD5 expression by DCs was required to generate optimally protective CD5hi T helper and CD8+ T cells; further, deletion of CD5 from T cells dampened tumor elimination in response to ICB therapy in vivo. Thus, CD5+ DCs are an essential component of optimal ICB therapy
    corecore