538 research outputs found

    Bohr Hamiltonian with deformation-dependent mass term for the Kratzer potential

    Full text link
    The Deformation Dependent Mass (DDM) Kratzer model is constructed by considering the Kratzer potential in a Bohr Hamiltonian, in which the mass is allowed to depend on the nuclear deformation, and solving it by using techniques of supersymmetric quantum mechanics (SUSYQM), involving a deformed shape invariance condition. Analytical expressions for spectra and wave functions are derived for separable potentials in the cases of gamma-unstable nuclei, axially symmetric prolate deformed nuclei, and triaxial nuclei, implementing the usual approximations in each case. Spectra and B(E2) transition rates are compared to experimental data. The dependence of the mass on the deformation, dictated by SUSYQM for the potential used, moderates the increase of the moment of inertia with deformation, removing a main drawback of the model.Comment: 27 pages, 6 figures, 8 tables. arXiv admin note: text overlap with arXiv:1103.593

    Ground-gamma band mixing and evolution of collectivity in even-even neutron-rich nuclei with 40<Z<50

    Full text link
    We propose an extended band mixing formalism capable of describing the ground-gamma band interaction in a wide range of collective spectra beyond the regions of well deformed nuclei. On this basis we explain the staggering effects observed in the gamma bands of Mo, Ru and Pd nuclei providing a consistent interpretation of new experimental data in the neutron rich region. As a result the systematic behavior of the odd-even staggering effect and some general characteristics of the spectrum such as the mutual disposition of the bands, the interaction strength and the band structures is explained as the manifestation of respective changes in collective dynamics of the system.Comment: 17 pages, 6 figures, 4 table

    Quantum corrections to conductivity: from weak to strong localization

    Full text link
    Results of detailed investigations of the conductivity and Hall effect in gated single quantum well GaAs/InGaAs/GaAs heterostructures with two-dimensional electron gas are presented. A successive analysis of the data has shown that the conductivity is diffusive for kFl=252k_F l=25-2 and behaves like diffusive one for kFl=20.5k_F l=2-0.5 down to the temperature T=0.4 K. It has been therewith found that the quantum corrections are not small at low temperature when kFl1k_F l\simeq 1. They are close in magnitude to the Drude conductivity so that the conductivity σ\sigma becomes significantly less than e2/he^{2}/h (the minimal σ\sigma value achieved in our experiment is about 3×108Ω13\times 10^{-8}\Omega^{-1} at kFl0.5k_Fl\simeq 0.5 and T=0.46T=0.46 K). We conclude that the temperature and magnetic field dependences of conductivity in whole kFlk_Fl range are due to changes of quantum corrections.Comment: RevTex 4.0, 10 figures, 7 two-column page
    corecore