629 research outputs found
Resampling technique applied to statistics of microsegregation characterization
Characterization of chemical heterogeneities at the dendrite scale is of practical importance for understanding phase transformation either during solidification or during subsequent solid-state treatment. Spot analysis with electron probe is definitely well-suited to investigate such heterogeneities at the micron scale that is relevant for most solidified products. However, very few has been done about the statistics of experimental solute distributions gained from such analyses when they are now more and more used for validating simulation data. There are two main sources generating discrepancies between estimated and actual solute distributions in an alloy: i) data sampling with a limited number of measurements to keep analysis within a reasonable time length; and ii) uncertainty linked to the measurement process, namely the physical noise that accompanies X-ray emission. Focusing on the first of these sources, a few 2-D composition images have been generated by phase field modelling of a Mg-Al alloy. These images were then used to obtain "true" solute distributions to which to compare coarse grid analyses as generally performed with a microanalyser. Resampling, i.e. generating several distributions by grid analyses with limited number of picked-up values, was then used to get statistics of estimates of solute distribution. The discussion of the present results deals first with estimating the average solute content and then focuses on the distribution in the primary phase
Josephson Vortex States in Intermediate Fields
Motivated by recent resistance data in high superconductors in fields
{\it parallel} to the CuO layers, we address two issues on the Josephson-vortex
phase diagram, the appearances of structural transitions on the observed first
order transition (FOT) curve in intermediate fields and of a lower critical
point of the FOT line. It is found that some rotated pinned solids are more
stable than the ordinary rhombic pinned solids with vacant interlayer spacings
and that, due to the vertical portion in higher fields of the FOT line, the FOT
tends to be destroyed by creating a lower critical point.Comment: 12 pages, 3 figures. To appear in J.Phys.Soc.Jpn. 71, No.2 (February,
2002
Solidification of Al-Sn-Cu based immiscible alloys under intense shearing
The official published version of the Article can be accessed from the link below - Copyright @ 2009 The Minerals, Metals & Materials Society and ASM InternationalThe growing importance of Al-Sn based alloys as materials for engineering applications
necessitates the development of uniform microstructures with improved performance. Guided by the recently thermodynamically assessed Al-Sn-Cu system, two model immiscible alloys, Al-45Sn-10Cu and Al-20Sn-10Cu, were selected to investigate the effects of intensive melt shearing provided by the novel melt conditioning by advanced shear technology (MCAST) unit on the uniform dispersion of the soft Sn phase in a hard Al matrix. Our experimental results have confirmed that intensive melt shearing is an effective way to achieve fine and uniform
dispersion of the soft phase without macro-demixing, and that such dispersed microstructure can be further refined in alloys with precipitation of the primary Al phase prior to the demixing reaction. In addition, it was found that melt shearing at 200 rpm and 60 seconds will be adequate to produce fine and uniform dispersion of the Sn phase, and that higher shearing speed and prolonged shearing time can only achieve minor further refinement.This work is funded by the EPSRC and
DT
The London theory of the crossing-vortex lattice in highly anisotropic layered superconductors
A novel description of Josephson vortices (JVs) crossed by the pancake
vortices (PVs) is proposed on the basis of the anisotropic London theory. The
field distribution of a JV and its energy have been calculated for both dense
() PV lattices with distance
between PVs, and the nonlinear JV core size . It is shown that the
``shifted'' PV lattice (PVs displaced mainly along JVs in the crossing vortex
lattice structure), formed in high out-of-plane magnetic fields transforms into
the PV lattice ``trapped'' by the JV sublattice at a certain field, lower than
, where is the flux quantum, is the
anisotropy parameter and is the distance between CuO planes.
With further decreasing , the free energy of the crossing vortex lattice
structure (PV and JV sublattices coexist separately) can exceed the free energy
of the tilted lattice (common PV-JV vortex structure) in the case of with the in-plane penetration depth if the low
() or high ()
in-plane magnetic field is applied. It means that the crossing vortex structure
is realized in the intermediate field orientations, while the tilted vortex
lattice can exist if the magnetic field is aligned near the -axis and the
-plane as well. In the intermediate in-plane fields
, the
crossing vortex structure with the ``trapped'' PV sublattice seems to settle in
until the lock-in transition occurs since this structure has the lower energy
with respect to the tilted vortex structure in the magnetic field
oriented near the -plane.Comment: 15 pages, 6 figures, accepted for publication in PR
Assessment techniques, database design and software facilities for thermodynamics and diffusion
The purpose of this article is to give a set of recommendations to producers of assessed thermodynamic data, who may be involved in either the critical evaluation of limited chemical systems or the creation and dissemination of larger thermodynamic databases. Also, it is hoped that reviewers and editors of scientific publications in this field will find some of the information useful. Good practice in the assessment process is essential, particularly as datasets from many different sources may be combined together into a single database. With this in mind, we highlight some problems that can arise during the assessment process and we propose a quality assurance procedure. It is worth mentioning at this point, that the provision of reliable assessed thermodynamic data relies heavily on the availability of high quality experimental information. The different software packages for thermodynamics and diffusion are described here only briefly
Cystatin C and lactoferrin concentrations in biological fluids as possible prognostic factors in eye tumor development
Objectives. To investigate the possible role of cystatin C in eye biological fluids locally and in serum and lactoferrin revealing anti-tumor activity in eye tumor development. Background. The increased number of eye tumors was registered recently not only in the countries with high insolation, but also in the northern countries including Russia (11 cases per million of population). Search for new biological markers is important for diagnosis and prognosis in eye tumors. Cystatin C, an endogenous inhibitor of cysteine proteases, plays an important protective role in several tumors. Lactoferrin was shown to express anti-tumor and antiviral activities. It was hypothesized that cystatin C and lactoferrin could serve as possible biomarkers in the diagnosis of malignant and benign eye tumors. Study design. A total of 54 patients with choroidal melanoma and benign eye tumors were examined (part of them undergoing surgical treatment). Serum, tear fluid and intraocular fluid samples obtained from the anterior chamber of eyes in patients with choroidal melanoma were studied. Methods. Cystatin C concentration in serum and eye biological fluids was measured by commercial ELISA kits for human (BioVendor, Czechia); lactoferrin concentration – by Lactoferrin-strip D 4106 ELISA test systems (Vector-BEST, Novosibirsk Region, Russia). Results. Cystatin C concentration in serum of healthy persons was significantly higher as compared to tear and intraocular fluids. In patients with choroidal melanoma, increased cystatin C concentration was similar in tear fluid of both the eyes. Lactoferrin level in tear fluid of healthy persons was significantly higher than its serum level. Significantly increased lactoferrin concentration in tear fluid was noted in patients with benign and malignant eye tumors. Conclusion. Increased level of cystatin C in tear fluid seems to be a possible diagnostic factor in the eye tumors studied. However, it does not allow us to differentiate between malignant and benign eye tumors. Similar changes were noted for lactoferrin in tear fluid
Visualization of risk of radiogenic second cancer in the organs and tissues of the human body
Background: Radiogenic second cancer is a common late effect in long term cancer survivors. Currently there are few methods or tools available to visually evaluate the spatial distribution of risks of radiogenic late effects in the human body. We developed a risk visualization method and demonstrated it for radiogenic second cancers in tissues and organs of one patient treated with photon volumetric modulated arc therapy and one patient treated with proton craniospinal irradiation. Methods: Treatment plans were generated using radiotherapy treatment planning systems (TPS) and dose information was obtained from TPS. Linear non-threshold risk coefficients for organs at risk of second cancer incidence were taken from the Biological Effects of Ionization Radiation VII report. Alternative risk models including linear exponential model and linear plateau model were also examined. The predicted absolute lifetime risk distributions were visualized together with images of the patient anatomy. Results: The risk distributions of second cancer for the two patients were visually presented. The risk distributions varied with tissue, dose, dose-risk model used, and the risk distribution could be similar to or very different from the dose distribution. Conclusions: Our method provides a convenient way to directly visualize and evaluate the risks of radiogenic second cancer in organs and tissues of the human body. In the future, visual assessment of risk distribution could be an influential determinant for treatment plan scoring
Efficient energy transfer in light-harvesting systems, I: optimal temperature, reorganization energy, and spatial-temporal correlations
Understanding the mechanisms of efficient and robust energy transfer in
light-harvesting systems provides new insights for the optimal design of
artificial systems. In this paper, we use the Fenna-Matthews-Olson (FMO)
protein complex and phycocyanin 645 (PC 645) to explore the general dependence
on physical parameters that help maximize the efficiency and maintain its
stability. With the Haken-Strobl model, the maximal energy transfer efficiency
(ETE) is achieved under an intermediate optimal value of dephasing rate. To
avoid the infinite temperature assumption in the Haken-Strobl model and the
failure of the Redfield equation in predicting the Forster rate behavior, we
use the generalized Bloch-Redfield (GBR) equation approach to correctly
describe dissipative exciton dynamics and find that maximal ETE can be achieved
under various physical conditions, including temperature, reorganization
energy, and spatial-temporal correlations in noise. We also identify regimes of
reorganization energy where the ETE changes monotonically with temperature or
spatial correlation and therefore cannot be optimized with respect to these two
variables
- …
