228 research outputs found
Effect of soil saturation on denitrification in a grassland soil
Nitrous oxide (N2O) is of major importance as a greenhouse gas and precursor of ozone (O3) destruction in the stratosphere mostly produced in soils. The soil-emitted N2O is generally predominantly derived from denitrification and, to a smaller extent, nitrification, both processes controlled by environmental factors and their interactions, and are influenced by agricultural management. Soil water content expressed as water-filled pore space (WFPS) is a major controlling factor of emissions and its interaction with compaction, has not been studied at the micropore scale. A laboratory incubation was carried out at different saturation levels for a grassland soil and emissions of N2O and N2 were measured as well as the isotopocules of N2O. We found that flux variability was larger in the less saturated soils probably due to nutrient distribution heterogeneity created from soil cracks and consequently nutrient hot spots. The results agreed with denitrification as the main source of fluxes at the highest saturations, but nitrification could have occurred at the lower saturation, even though moisture was still high (71% WFSP). The isotopocules data indicated isotopic similarities in the wettest treatments vs. the two drier ones. The results agreed with previous findings where it is clear there are two N pools with different dynamics: added N producing intense denitrification vs. soil N resulting in less isotopic fractionation
UK informative inventory report (1990 to 2013)
This is the 10th Informative Inventory Report (IIR) from the UK National Atmospheric Emissions Inventory (NAEI) Programme. The report is compiled to accompany the UK’s 2015 data submission under the United Nations Economic Commission for Europe (UNECE) Convention on Long-Range Transboundary Air Pollution (CLRTAP) and contains detailed information on annual emission estimates of air quality pollutants by source in the UK from 1990 onwards
Opportunities for reducing environmental emissions from forage-based dairy farms
Modern dairy production is inevitably associated with impacts to the environment and the challenge for the industry today is to increase production to meet growing global demand while minimising emissions to the environment. Negative environmental impacts include gaseous emissions to the atmosphere, of ammonia from livestock manure and fertiliser use, of methane from enteric fermentation and manure management, and of nitrous oxide from nitrogen applications to soils and from manure management. Emissions to water include nitrate, ammonium, phosphorus, sediment, pathogens and organic matter, deriving from nutrient applications to forage crops and/or the management of grazing livestock. This paper reviews the sources and impacts of such emissions in the context of a forage-based dairy farm and considers a number of potential mitigation strategies, giving some examples using the farm-scale model SIMSDAIRY. Most of the mitigation measures discussed are associated with systemic improvements in the efficiency of production in dairy systems. Important examples of mitigations include: improvements to dairy herd fertility, that can reduce methane and ammonia emissions by up to 24 and 17%, respectively; diet modification such as the use of high sugar grasses for grazing, which are associated with reductions in cattle N excretion of up to 20% (and therefore lower N losses to the environment) and potentially lower methane emissions, or reducing the crude protein content of the dairy cow diet through use of maize silage to reduce N excretion and methane emissions; the use of nitrification inhibitors with fertiliser and slurry applications to reduce nitrous oxide emissions and nitrate leaching by up to 50%. Much can also be achieved through attention to the quantity, timing and method of application of nutrients to forage crops and utilising advances made through genetic improvements
The amount but not the proportion of N2 fixation and transfers to neighboring plants varies across grassland soils
Biological nitrogen fixation (BNF) is an important nitrogen source for both N2-fixers and their neighboring plants in natural and managed ecosystems. Biological N fixation can vary considerably depending on soil conditions, yet there is a lack of knowledge on the impact of varying soils on the contribution of N from N2-fixers in mixed swards. In this study, the amount and proportion of BNF from red clover were assessed using three grassland soils. Three soil samples, Hallsworth (HH), Crediton (CN), and Halstow (HW) series, were collected from three grassland sites in Devon, UK. A pot experiment with 15N natural abundance was conducted to estimate BNF from red clover, and the proportion of N transferred from red clover to the non-N2 fixing grass in a grass-clover system. The results showed that BNF in red clover sourced from atmosphere in the HH soil was 2.92 mg N plant−1, which was significantly lower than that of the CN (6.18 mg N plant−1) and HW (8.01 mg N plant−1) soils. Nitrogen in grass sourced from BNF via belowground was 0.46 mg N plant−1 in the HH soil, which was significantly greater than that in CN and HW soils. However, proportionally there were no significant differences in the percentage N content of both red clover and grass sourced from BNF via belowground among soils, at 65%, 67%, 65% and 35%, 27%, 31% in HH, CN, and HW, respectively. Our observations indicate that the amount of BNF by red clover varies among grassland soils, as does the amount of N sourced from BNF that is transferred to neighboring plants, which is linked to biomass production. Proportionally there was no difference among soils in N sourced from BNF in both the red clover plants and transferred to neighboring plants
Reducing nitrous oxide emissions by changing N fertiliser use from calcium ammonium nitrate (CAN) to urea based formulations
This research was financially supported under the National Development Plan, through the Research Stimulus Fund, administered by the Department of Agriculture, Food and the Marine (Grant numbers RSF10-/RD/SC/716 and RSF11S138) and from the Department of Agriculture and Rural Development (Ref: DARD Evidence and Innovation project 13/04/06) for Northern Ireland. The first author gratefully acknowledges funding received from the Teagasc Walsh Fellowship Scheme (Ref: 2012005).peer-reviewedThe accelerating use of synthetic nitrogen (N) fertilisers, to meet the world's growing food demand, is the primary driver for increased atmospheric concentrations of nitrous oxide (N2O). The IPCC default emission factor (EF) for N2O from soils is 1% of the N applied, irrespective of its form. However, N2O emissions tend to be higher from nitrate-containing fertilisers e.g. calcium ammonium nitrate (CAN) compared to urea, particularly in regions, which have mild, wet climates and high organic matter soils. Urea can be an inefficient N source due to NH3 volatilisation, but nitrogen stabilisers (urease and nitrification inhibitors) can improve its efficacy. This study evaluated the impact of switching fertiliser formulation from calcium ammonium nitrate (CAN) to urea-based products, as a potential mitigation strategy to reduce N2O emissions at six temperate grassland sites on the island of Ireland. The surface applied formulations included CAN, urea and urea with the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) and/or the nitrification inhibitor dicyandiamide (DCD). Results showed that N2O emissions were significantly affected by fertiliser formulation, soil type and climatic conditions. The direct N2O emission factor (EF) from CAN averaged 1.49% overall sites, but was highly variable, ranging from 0.58% to 3.81. Amending urea with NBPT, to reduce ammonia volatilisation, resulted in an average EF of 0.40% (ranging from 0.21 to 0.69%)-compared to an average EF of 0.25% for urea (ranging from 0.1 to 0.49%), with both fertilisers significantly lower and less variable than CAN. Cumulative N2O emissions from urea amended with both NBPT and DCD were not significantly different from background levels. Switching from CAN to stabilised urea formulations was found to be an effective strategy to reduce N2O emissions, particularly in wet, temperate grassland.Department of Agriculture and Rural Development for Northern IrelandTeagasc Walsh Fellowship ProgrammeDepartment of Agriculture, Food and the Marin
An Inventory of Mitigation Methods and Guide to their Effects on Diffuse Water Pollution, Greenhouse Gas Emissions and Ammonia Emissions from Agriculture
Prepared as part of Defra Project WQ010
- …
