119 research outputs found

    Coupling changes in cell shape to chromosome segregation

    Get PDF
    Animal cells undergo dramatic changes in shape, mechanics and polarity as they progress through the different stages of cell division. These changes begin at mitotic entry, with cell–substrate adhesion remodelling, assembly of a cortical actomyosin network and osmotic swelling, which together enable cells to adopt a near spherical form even when growing in a crowded tissue environment. These shape changes, which probably aid spindle assembly and positioning, are then reversed at mitotic exit to restore the interphase cell morphology. Here, we discuss the dynamics, regulation and function of these processes, and how cell shape changes and sister chromatid segregation are coupled to ensure that the daughter cells generated through division receive their fair inheritance

    Metastasis of Tumor Cells Is Enhanced by Downregulation of Bit1

    Get PDF
    Resistance to anoikis, which is defined as apoptosis induced by loss of integrin-mediated cell attachment to the extracellular matrix, is a determinant of tumor progression and metastasis. We have previously identified the mitochondrial Bit1 (Bcl-2 inhibitor of transcription) protein as a novel anoikis effector whose apoptotic function is independent from caspases and is uniquely controlled by integrins. In this report, we examined the possibility that Bit1 is suppressed during tumor progression and that Bit1 downregulation may play a role in tumor metastasis.Using a human breast tumor tissue array, we found that Bit1 expression is suppressed in a significant fraction of advanced stages of breast cancer. Targeted disruption of Bit1 via shRNA technology in lowly aggressive MCF7 cells conferred enhanced anoikis resistance, adhesive and migratory potential, which correlated with an increase in active Extracellular kinase regulated (Erk) levels and a decrease in Erk-directed phosphatase activity. These pro-metastasis phenotypes were also observed following downregulation of endogenous Bit1 in Hela and B16F1 cancer cell lines. The enhanced migratory and adhesive potential of Bit1 knockdown cells is in part dependent on their high level of Erk activation since down-regulating Erk in these cells attenuated their enhanced motility and adhesive properties. The Bit1 knockdown pools also showed a statistically highly significant increase in experimental lung metastasis, with no differences in tumor growth relative to control clones in vivo using a BALB/c nude mouse model system. Importantly, the pulmonary metastases of Bit1 knockdown cells exhibited increased phospho-Erk staining.These findings indicate that downregulation of Bit1 conferred cancer cells with enhanced anoikis resistance, adhesive and migratory properties in vitro and specifically potentiated tumor metastasis in vivo. These results underscore the therapeutic importance of restoring Bit1 expression in cancer cells to circumvent metastasis at least in part through inhibition of the Erk pathway

    ABL1 regulates spindle orientation in adherent cells and mammalian skin

    Get PDF
    Despite the growing evidence for the regulated spindle orientation in mammals, a systematic approach for identifying the responsible genes in mammalian cells has not been established. Here we perform a kinase-targeting RNAi screen in HeLa cells and identify ABL1 as a novel regulator of spindle orientation. Knockdown of ABL1 causes the cortical accumulation of Leu-Gly-Asn repeat-enriched-protein (LGN), an evolutionarily conserved regulator of spindle orientation. This results in the LGN-dependent spindle rotation and spindle misorientation. In vivo inactivation of ABL1 by a pharmacological inhibitor or by ablation of the abl1 gene causes spindle misorientation and LGN mislocalization in mouse epidermis. Furthermore, ABL1 directly phosphorylates NuMA, a binding partner of LGN, on tyrosine 1774. This phosphorylation maintains the cortical localization of NuMA during metaphase, and ensures the LGN/NuMA-dependent spindle orientation control. This study provides a novel approach to identify genes regulating spindle orientation in mammals and uncovers new signalling pathways for this mechanism

    Role of Palladin Phosphorylation by Extracellular Signal-Regulated Kinase in Cell Migration

    Get PDF
    Phosphorylation of actin-binding proteins plays a pivotal role in the remodeling of the actin cytoskeleton to regulate cell migration. Palladin is an actin-binding protein that is phosphorylated by growth factor stimulation; however, the identity of the involved protein kinases remains elusive. In this study, we report that palladin is a novel substrate of extracellular signal-regulated kinase (ERK). Suppression of ERK activation by a chemical inhibitor reduced palladin phosphorylation, and expression of active MEK alone was sufficient for phosphorylation. In addition, an in vitro kinase assay demonstrated direct palladin phosphorylation by ERK. We found that Ser77 and Ser197 are essential residues for phosphorylation. Although the phosphorylation of these residues was not required for actin cytoskeletal organization, we found that expression of non-phosphorylated palladin enhanced cell migration. Finally, we show that phosphorylation inhibits the palladin association with Abl tyrosine kinase. Taken together, our results indicate that palladin phosphorylation by ERK has an anti-migratory function, possibly by modulating interactions with molecules that regulate cell migration

    Role of Dlg5/lp-dlg, a Membrane-Associated Guanylate Kinase Family Protein, in Epithelial-Mesenchymal Transition in LLc-PK1 Renal Epithelial Cells

    Get PDF
    Discs large homolog 5 (Dlg5) is a member of the membrane-associated guanylate kinase adaptor family of proteins, some of which are involved in the regulation of epithelial-to-mesenchymal transition (EMT). Dlg5 has been described as a susceptibility gene for Crohn's disease; however, the physiological function of Dlg5 is unknown. We show here that transforming growth factor-β (TGF-β)-induced EMT suppresses Dlg5 expression in LLc-PK1 cells. Depletion of Dlg5 expression by knockdown promoted the expression of the mesenchymal marker proteins, fibronectin and α-smooth muscle actin, and suppressed the expression of E-cadherin. In addition, activation of JNK and p38, which are stimulated by TGF-β, was enhanced by Dlg5 depletion. Furthermore, inhibition of the TGF-β receptor suppressed the effects of Dlg5 depletion. These observations suggest that Dlg5 is involved in the regulation of TGF-βreceptor-dependent signals and EMT

    Neuroendocrine mechanisms controlling female puberty: new approaches, new concepts.

    Full text link
    Sexual development and mature reproductive function are controlled by a handful of neurones that, located in the basal forebrain, produce the decapeptide luteinizing hormone releasing hormone (LHRH). LHRH is released into the portal system that connects the hypothalamus to the pituitary gland and act on the latter to stimulate the synthesis and release of gonadotrophin hormones. The pubertal activation of LHRH release requires coordinated changes in excitatory and inhibitory inputs to LHRH-secreting neurones. These inputs are provided by both transsynaptic and glia-to-neurone communication pathways. Using cellular and molecular approaches, in combination with transgenic animal models and high-throughput procedures for gene discovery, we are gaining new insight into the basic mechanisms underlying this dual control of LHRH secretion and, hence, the initiation of mammalian puberty. Our results suggest that the initiation of puberty requires reciprocal neurone-glia communication involving excitatory amino acids and growth factors, and the coordinated actions of a group of transcriptional regulators that appear to represent a higher level of control governing the pubertal process

    A Critical Period for Learning and Plastic Changes at Hippocampal CA1 Synapses

    No full text
    Abstract Postnatal development of hippocampal function has been reported in numerous mammalian species, including humans. To obtain a synaptic evidence, we analyzed developmental changes in plasticity after an inhibitory avoidance task in rats. Learning performance was low in infants (postnatal 2 weeks) but clearly improved from the juvenile period (3–4 weeks) to adulthood (8 weeks). One hour after the training, we prepared brain slices and sequentially recorded miniature excitatory postsynaptic currents (mEPSCs) and inhibitory postsynaptic currents (mIPSCs) from the same hippocampal CA1 neuron. Although the training failed to affect the amplitude of either mEPSCs or mIPSCs at 2 weeks, it increased mEPSC, but not mIPSC, amplitude at 3 weeks. At 4 weeks, the training had increased the amplitude of both mEPSCs and mIPSCs, whereas mIPSC, but not mEPSC, amplitude was increased at 8 weeks. Because early-life physiological functions can affect performance, we also evaluated sensory–motor functions together with emotional state and found adequate sensory/motor functions from infancy to adulthood. Moreover, by analyzing performance of rats in multiple hippocampal-dependent tasks, we found that the developmental changes in the performance are task dependent. Taken together, these findings delineate a critical period for learning and plastic changes at hippocampal CA1 synapses.</jats:p
    corecore