338 research outputs found

    Ionization dynamics in expanding clusters studied by XUV pump probe spectroscopy

    Get PDF
    he expansion and disintegration dynamics of xenon clusters initiated by the ionization with femtosecond soft x ray extreme ultraviolet XUV pulses were studied with pump probe spectroscopy using the autocorrelator setup of the Free Electron LASer in Hamburg FLASH facility. The ionization by the first XUV pulse of 92 eV photon energy 8 1012 W cm amp; 8722;2 leads to the generation of a large number of quasi free electrons trapped by the space charge of the cluster ions. A temporally delayed, more intense probe 4 1013 W cm amp; 8722;2 pulse substantially increases a population of nanoplasma electrons providing a way of probing plasma states in the expanding cluster by tracing the average charge of fragment ions. The results of the study reveal a timescale for cluster expansion and disintegration, which depends essentially on the initial cluster size. The average charge state of fragment ions, and thus the cluster plasma changes significantly on a timescale of 1 3 p

    Decoherence of matter waves by thermal emission of radiation

    Full text link
    Emergent quantum technologies have led to increasing interest in decoherence - the processes that limit the appearance of quantum effects and turn them into classical phenomena. One important cause of decoherence is the interaction of a quantum system with its environment, which 'entangles' the two and distributes the quantum coherence over so many degrees of freedom as to render it unobservable. Decoherence theory has been complemented by experiments using matter waves coupled to external photons or molecules, and by investigations using coherent photon states, trapped ions and electron interferometers. Large molecules are particularly suitable for the investigation of the quantum-classical transition because they can store much energy in numerous internal degrees of freedom; the internal energy can be converted into thermal radiation and thus induce decoherence. Here we report matter wave interferometer experiments in which C70 molecules lose their quantum behaviour by thermal emission of radiation. We find good quantitative agreement between our experimental observations and microscopic decoherence theory. Decoherence by emission of thermal radiation is a general mechanism that should be relevant to all macroscopic bodies.Comment: 5 pages, 4 figure

    Eosinophils Are Important for Protection, Immunoregulation and Pathology during Infection with Nematode Microfilariae

    Get PDF
    Eosinophil responses typify both allergic and parasitic helminth disease. In helminthic disease, the role of eosinophils can be both protective in immune responses and destructive in pathological responses. To investigate whether eosinophils are involved in both protection and pathology during filarial nematode infection, we explored the role of eosinophils and their granule proteins, eosinophil peroxidase (EPO) and major basic protein-1 (MBP-1), during infection with Brugia malayi microfilariae. Using eosinophil-deficient mice (PHIL), we further clarify the role of eosinophils in clearance of microfilariae during primary, but not challenge infection in vivo. Deletion of EPO or MBP-1 alone was insufficient to abrogate parasite clearance suggesting that either these molecules are redundant or eosinophils act indirectly in parasite clearance via augmentation of other protective responses. Absence of eosinophils increased mast cell recruitment, but not other cell types, into the broncho-alveolar lavage fluid during challenge infection. In addition absence of eosinophils or EPO alone, augmented parasite-induced IgE responses, as measured by ELISA, demonstrating that eosinophils are involved in regulation of IgE. Whole body plethysmography indicated that nematode-induced changes in airway physiology were reduced in challenge infection in the absence of eosinophils and also during primary infection in the absence of EPO alone. However lack of eosinophils or MBP-1 actually increased goblet cell mucus production. We did not find any major differences in cytokine responses in the absence of eosinophils, EPO or MBP-1. These results reveal that eosinophils actively participate in regulation of IgE and goblet cell mucus production via granule secretion during nematode-induced pathology and highlight their importance both as effector cells, as damage-inducing cells and as supervisory cells that shape both innate and adaptive immunity

    Identifying hazardousness of sewer pipeline gas mixture using classification methods: a comparative study

    Get PDF
    In this work, we formulated a real-world problem related to sewer pipeline gas detection using the classification-based approaches. The primary goal of this work was to identify the hazardousness of sewer pipeline to offer safe and non-hazardous access to sewer pipeline workers so that the human fatalities, which occurs due to the toxic exposure of sewer gas components, can be avoided. The dataset acquired through laboratory tests, experiments, and various literature sources was organized to design a predictive model that was able to identify/classify hazardous and non-hazardous situation of sewer pipeline. To design such prediction model, several classification algorithms were used and their performances were evaluated and compared, both empirically and statistically, over the collected dataset. In addition, the performances of several ensemble methods were analyzed to understand the extent of improvement offered by these methods. The result of this comprehensive study showed that the instance-based learning algorithm performed better than many other algorithms such as multilayer perceptron, radial basis function network, support vector machine, reduced pruning tree. Similarly, it was observed that multi-scheme ensemble approach enhanced the performance of base predictors

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Phonon anharmonicities and ultrafast dynamics in epitaxial Sb2Te3

    Get PDF
    In this study we report on the investigation of epitaxially grown Sb2Te3 by employing Fourier-Transform transmission Spectroscopy (FTS) with laser-induced Coherent Synchrotron Radiation (CSR) in the Terahertz (THz) spectral range. Static spectra in the range between 20 and 120 cm−1 highlight a peculiar softening of an in-plane IR-active phonon mode upon temperature decrease, as opposed to all Raman active modes which instead show a hardening upon temperature decrease in the same energy range. The phonon mode softening is found to be accompanied by an increase of free carrier concentration. A strong coupling of the two systems (free carriers and phonons) is observed and further evidenced by exciting the same phonon mode at 62 cm−1 within an ultrafast pump-probe scheme employing a femtosecond laser as pump and a CSR single cycle THz pulse as probe. Separation of the free carrier contribution and the phonon resonance in the investigated THz range reveals that, both damping of the phonon mode and relaxation of hot carriers in the time domain happen on the same time scale of 5 ps. This relaxation is about a factor of 10 slower than expected from the Lorentz time-bandwidth limit. The results are discussed in the framework of phonon scattering at thermal and laser induced transient free carriers

    Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice

    Get PDF
    Oxidative stress has been postulated to play an important role in the pathogenesis of asthma; although a defect in antioxidant responses has been speculated to exacerbate asthma severity, this has been difficult to demonstrate with certainty. Nuclear erythroid 2 p45-related factor 2 (Nrf2) is a redox-sensitive basic leucine zipper transcription factor that is involved in the transcriptional regulation of many antioxidant genes. We show that disruption of the Nrf2 gene leads to severe allergen-driven airway inflammation and hyperresponsiveness in mice. Enhanced asthmatic response as a result of ovalbumin sensitization and challenge in Nrf2-disrupted mice was associated with more pronounced mucus cell hyperplasia and infiltration of eosinophils into the lungs than seen in wild-type littermates. Nrf2 disruption resulted in an increased expression of the T helper type 2 cytokines interleukin (IL)-4 and IL-13 in bronchoalveolar lavage fluid and in splenocytes after allergen challenge. The enhanced severity of the asthmatic response from disruption of the Nrf2 pathway was a result of a lowered antioxidant status of the lungs caused by lower basal expression, as well as marked attenuation, of the transcriptional induction of multiple antioxidant genes. Our studies suggest that the responsiveness of Nrf2-directed antioxidant pathways may act as a major determinant of susceptibility to allergen-mediated asthma

    Imaging Predictors of Left Ventricular Functional Recovery after Reperfusion Therapy of ST-Elevation Myocardial Infarction Assessed by Cardiac Magnetic Resonance

    Get PDF
    Background: Left ventricular global longitudinal strain (LV GLS) is a superior predictor of adverse cardiac events in patients with myocardial infarction and heart failure. We investigated the ability of morphological features of infarcted myocardium to detect acute left ventricular (LV) dysfunction and predict LV functional recovery after three months in patients with acute ST-segment elevation myocardial infarction (STEMI). Methods: Sixty-six STEMI patients were included in the C-reactive protein (CRP) apheresis in Acute Myocardial Infarction Study (CAMI-1). LV ejection fraction (LVEF), LV GLS, LV global circumferential strain (LV GCS), infarct size (IS), area-at-risk (AAR), and myocardial salvage index (MSI) were assessed by CMR 5 ± 3 days (baseline) and 12 ± 2 weeks after (follow-up) the diagnosis of first acute STEMI. Results: Significant changes in myocardial injury parameters were identified after 12 weeks of STEMI diagnosis. IS decreased from 23.59 ± 11.69% at baseline to 18.29 ± 8.32% at follow-up (p < 0.001). AAR and MVO also significantly reduced after 12 weeks. At baseline, there were reasonably moderate correlations between IS and LVEF (r = −0.479, p < 0.001), LV GLS (r = 0.441, p < 0.001) and LV GCS (r = 0.396, p = 0.001) as well as between AAR and LVEF (r = −0.430, p = 0.003), LV GLS (r = 0.501, p < 0.001) and weak with LV GCS (r = 0.342, p = 0.020). At follow-up, only MSI and change in LV GCS over time showed a weak but significant correlation (r = −0.347, p = 0.021). Patients with larger AAR at baseline improved more in LVEF (p = 0.019) and LV GLS (p = 0.020) but not in LV GCS. Conclusion: The CMR tissue characteristics of myocardial injury correlate with the magnitude of LV dysfunction during the acute stage of STEMI. AAR predicts improvement in LVEF and LV GLS, while MSI is a sensitive marker of LV GCS recovery at three months follow-up after STEMI
    corecore