12,324 research outputs found
Group velocity and causality in standard relativistic resistive magnetohydrodynamics
Group velocity of electromagnetic waves in plasmas derived by standard
relativistic resistive MHD (resistive RMHD) equations is superluminal. If we
assume that the group velocity represents the propagation velocity of a signal,
we have to worry about the causality problem. That is, some acausal phenomena
may be induced, such that information transportation to the absolute past and
spontaneous decrease in the entropy. Here, we tried to find the acausal
phenomena using standard resistive RMHD numerical simulations in the suggested
situation of the acausal phenomena. The calculation results showed that even in
such situations no acausal effect happens. The numerical result with respect to
the velocity limit of the information transportation is consistent with a
linear theory of wave train propagation. Our results assure that we can use
these equations without problems of acausal phenomena.Comment: 28 pages, 10 figure
Parametrization of the Driven Betatron Oscillation
An AC dipole is a magnet which produces a sinusoidally oscillating dipole
field and excites coherent transverse beam motion in a synchrotron. By
observing this coherent motion, the optical parameters can be directly measured
at the beam position monitor locations. The driven oscillation induced by an AC
dipole will generate a phase space ellipse which differs from that of the free
oscillation. If not properly accounted for, this difference can lead to a
misinterpretation of the actual optical parameters, for instance, of 6% or more
in the cases of the Tevatron, RHIC, or LHC. The effect of an AC dipole on the
linear optics parameters is identical to that of a thin lens quadrupole. By
introducing a new amplitude function to describe this new phase space ellipse,
the motion produced by an AC dipole becomes easier to interpret. Beam position
data taken under the influence of an AC dipole, with this new interpretation in
mind, can lead to more precise measurements of the normal Courant-Snyder
parameters. This new parameterization of the driven motion is presented and is
used to interpret data taken in the FNAL Tevatron using an AC dipole.Comment: 8 pages, 8 figures, and 1 tabl
Identification of novel clostridium perfringens type E strains that carry an iota toxin plasmid with a functional enterotoxin gene
Clostridium perfringens enterotoxin (CPE) is a major virulence factor for human gastrointestinal diseases, such as food poisoning and antibiotic associated diarrhea. The CPE-encoding gene (cpe) can be chromosomal or plasmid-borne. Recent development of conventional PCR cpe-genotyping assays makes it possible to identify cpe location (chromosomal or plasmid) in type A isolates. Initial studies for developing cpe genotyping assays indicated that all cpe-positive strains isolated from sickened patients were typable by cpe-genotypes, but surveys of C. perfringens environmental strains or strains from feces of healthy people suggested that this assay might not be useful for some cpe-carrying type A isolates. In the current study, a pulsed-field gel electrophoresis Southern blot assay showed that four cpe-genotype untypable isolates carried their cpe gene on a plasmid of ~65 kb. Complete sequence analysis of the ~65 kb variant cpe-carrying plasmid revealed no intact IS elements and a disrupted cytosine methyltransferase (dcm) gene. More importantly, this plasmid contains a conjugative transfer region, a variant cpe gene and variant iota toxin genes. The toxin genes encoded by this plasmid are expressed based upon the results of RT-PCR assays. The ~65 kb plasmid is closely related to the pCPF4969 cpe plasmid of type A isolates. MLST analyses indicated these isolates belong to a unique cluster of C. perfringens. Overall, these isolates carrying a variant functional cpe gene and iota toxin genes represent unique type E strains. © 2011 Miyamoto et al
Long-Lived Double-Barred Galaxies: Critical Mass and Length Scales
A substantial fraction of disk galaxies is double-barred. We analyze the
dynamical stability of such nested bar systems by means of Liapunov
exponents,by fixing a generic model and varying the inner (secondary) bar mass.
We show that there exists a critical mass below which the secondary bar cannot
sustain its own orbital structure, and above which it progressively destroys
the outer (primary) bar-supporting orbits. In this critical state, a large
fraction of the trajectories (regular and chaotic) are aligned with either bar,
suggesting the plausibility of long-lived dynamical states when
secondary-to-primary bar mass ratio is of the order of a few percent.
Qualitatively similar results are obtained by varying the size of the secondary
bar, within certain limits, while keeping its mass constant. In both cases, an
important role appears to be played by chaotic trajectories which are trapped
around (especially) the primary bar for long periods of time.Comment: 7 pages, 1 figure, to be published in Astrophysical Journal Letters
(Vol. 595, 9/20/03 issue). Replaced by revised figure and corrected typo
Naked Singularity Explosion in Higher Dimensions
Motivated by the recent argument that in the TeV-scale gravity
trans-Planckian domains of spacetime as effective naked singularities would be
generated by high-energy particle (and black-hole) collisions, we investigate
the quantum particle creation by naked-singularity formation in general
dimensions. Background spacetime is simply modeled by the self-similar Vaidya
solution, describing the spherical collapse of a null dust fluid. In a generic
case the emission power is found to be proportional to the quadratic inverse of
the remaining time to a Cauchy horizon, as known in four dimensions. On the
other hand, the power is proportional to the quartic inverse for a critical
case in which the Cauchy horizon is `degenerate'. According to these results,
we argue that the backreaction of the particle creation to gravity will be
important in particle collisions, in contrast to the gravitational collapse of
massive stellar objects, since the bulk of energy is carried away by the
quantum radiation even if a quantum gravitational effect cutoff the radiation
just before the appearance of naked singularity.Comment: 19 pages, 2 figures; v2: typos fixe
Generic features of Einstein-Aether black holes
We reconsider spherically symmetric black hole solutions in Einstein-Aether
theory with the condition that this theory has identical PPN parameters as
those for general relativity, which is the main difference from the previous
research. In contrast with previous study, we allow superluminal propagation of
a spin-0 Aether-gravity wave mode. As a result, we obtain black holes having a
spin-0 "horizon" inside an event horizon. We allow a singularity at a spin-0
"horizon" since it is concealed by the event horizon. If we allow such a
configuration, the kinetic term of the Aether field can be large enough for
black holes to be significantly different from Schwarzschild black holes with
respect to ADM mass, innermost stable circular orbit, Hawking temperature, and
so on. We also discuss whether or not the above features can be seen in more
generic vector-tensor theories.Comment: 9 pages, 9 figures, basic equations and their analytic arguments are
adde
A novel protein isoform of the RON tyrosine kinase receptor transforms human pancreatic duct epithelial cells.
The MST1R gene is overexpressed in pancreatic cancer producing elevated levels of the RON tyrosine kinase receptor protein. While mutations in MST1R are rare, alternative splice variants have been previously reported in epithelial cancers. We report the discovery of a novel RON isoform discovered in human pancreatic cancer. Partial splicing of exons 5 and 6 (P5P6) produces a RON isoform that lacks the first extracellular immunoglobulin-plexin-transcription domain. The splice variant is detected in 73% of xenografts derived from pancreatic adenocarcinoma patients and 71% of pancreatic cancer cell lines. Peptides specific to RON P5P6 detected in human pancreatic cancer specimens by mass spectrometry confirm translation of the protein isoform. The P5P6 isoform is found to be constitutively phosphorylated, present in the cytoplasm, and it traffics to the plasma membrane. Expression of P5P6 in immortalized human pancreatic duct epithelial (HPDE) cells activates downstream AKT, and in human pancreatic epithelial nestin-expressing cells, activates both the AKT and MAPK pathways. Inhibiting RON P5P6 in HPDE cells using a small molecule inhibitor BMS-777607 blocked constitutive activation and decreased AKT signaling. P5P6 transforms NIH3T3 cells and induces tumorigenicity in HPDE cells. Resultant HPDE-P5P6 tumors develop a dense stromal compartment similar to that seen in pancreatic cancer. In summary, we have identified a novel and constitutively active isoform of the RON tyrosine kinase receptor that has transforming activity and is expressed in human pancreatic cancer. These findings provide additional insight into the biology of the RON receptor in pancreatic cancer and are clinically relevant to the study of RON as a potential therapeutic target
Passive spiral formation from halo gas starvation: Gradual transformation into S0s
Recent spectroscopic and high resolution -imaging observations have
revealed significant numbers of ``passive'' spiral galaxies in distant
clusters, with all the morphological hallmarks of a spiral galaxy (in
particular, spiral arm structure), but with weak or absent star formation.
Exactly how such spiral galaxies formed and whether they are the progenitors of
present-day S0 galaxies is unclear. Based on analytic arguments and numerical
simulations of the hydrodynamical evolution of a spiral galaxy's halo gas
(which is a likely candidate for the source of gas replenishment for star
formation in spirals), we show that the origin of passive spirals may well be
associated with halo gas stripping. Such stripping results mainly from the
hydrodynamical interaction between the halo gas and the hot intracluster gas.
Our numerical simulations demonstrate that even if a spiral orbits a cluster
with a pericenter distance 3 times larger than the cluster core radius,
80 % of the halo gas is stripped within a few Gyr and, accordingly,
cannot be accreted by the spiral. Furthermore, our study demonstrates that this
dramatic decline in the gaseous infall rate leads to a steady increase in the
parameter for the disk, with the spiral arm structure, although persisting,
becoming less pronounced as the star formation rate gradually decreases. These
results suggest that passive spirals formed in this way, gradually evolve into
red cluster S0s.Comment: 13 pages 4 figures (fig.1 = jpg format), accepted by Ap
CRISPR/Cas9-based editing of a sensitive transcriptional regulatory element to achieve cell type-specific knockdown of the NEMO scaffold protein
The use of alternative promoters for the cell type-specific expression of a given mRNA/protein is a common cell strategy. NEMO is a scaffold protein required for canonical NF-κB signaling. Transcription of the NEMO gene is primarily controlled by two promoters: one (promoter B) drives NEMO transcription in most cell types and the second (promoter D) is largely responsible for NEMO transcription in liver cells. Herein, we have used a CRISPR/Cas9-based approach to disrupt a core sequence element of promoter B, and this genetic editing essentially eliminates expression of NEMO mRNA and protein in 293T human kidney cells. By cell subcloning, we have isolated targeted 293T cell lines that express no detectable NEMO protein, have defined genomic alterations at promoter B, and do not support activation of canonical NF-κB signaling in response to treatment with tumor necrosis factor. Nevertheless, noncanonical NF-κB signaling is intact in these NEMO-deficient cells. Expression of ectopic wildtype NEMO, but not certain human NEMO disease mutants, in the edited cells restores downstream NF-κB signaling in response to tumor necrosis factor. Targeting of the promoter B element does not substantially reduce NEMO expression (from promoter D) in the human SNU423 liver cancer cell line. Thus, we have created a strategy for selectively eliminating cell typespecific expression from an alternative promoter and have generated 293T cell lines with a functional knockout of NEMO. The implications of these findings for further studies and for therapeutic approaches to target canonical NF-κB signaling are discussed.Published versio
- …
