2,731 research outputs found
Static response of Fermi liquids with tensor interactions
We use Landau's theory of a normal Fermi liquid to derive expressions for the
static response of a system with a general tensor interaction that conserves
the total spin and the total angular momentum of the quasiparticle-quasihole
pair. The magnetic susceptibility is calculated in detail, with the inclusion
of the center of mass tensor and cross vector terms in addition to the exchange
tensor one. We also introduce a new parametrization of the tensor Landau
parameters which significantly reduces the importance of high angular harmonic
contributions. For nuclear matter and neutron matter we find that the two most
important effects of the tensor interaction are to give a contribution from
multipair states and to renormalize the magnetic moments. Response to a weak
probe may be calculated using similar methods, replacing the magnetic moments
with the matrix elements of the weak charges
Design of Force Fields from Data at Finite Temperature
We investigate the problem of how to obtain the force field between atoms of
an experimentally determined structure. We show how this problem can be
efficiently solved, even at finite temperature, where the position of the atoms
differs substantially from the ground state. We apply our method to systems
modeling proteins and demonstrate that the correct potentials can be recovered
even in the presence of thermal noise.Comment: 10 pages, 1 postcript figure, Late
High-pressure structural investigation of several zircon-type orthovanadates
Room temperature angle-dispersive x-ray diffraction measurements on
zircon-type EuVO4, LuVO4, and ScVO4 were performed up to 27 GPa. In the three
compounds we found evidence of a pressure-induced structural phase
transformation from zircon to a scheelite-type structure. The onset of the
transition is near 8 GPa, but the transition is sluggish and the low- and
high-pressure phases coexist in a pressure range of about 10 GPa. In EuVO4 and
LuVO4 a second transition to a M-fergusonite-type phase was found near 21 GPa.
The equations of state for the zircon and scheelite phases are also determined.
Among the three studied compounds, we found that ScVO4 is less compressible
than EuVO4 and LuVO4, being the most incompressible orthovanadate studied to
date. The sequence of structural transitions and compressibilities are
discussed in comparison with other zircon-type oxides.Comment: 34 pages, 2 Tables, 11 Figure
Deriving amino acid contact potentials from their frequencies of occurence in proteins: a lattice model study
The possibility of deriving the contact potentials between amino acids from
their frequencies of occurence in proteins is discussed in evolutionary terms.
This approach allows the use of traditional thermodynamics to describe such
frequencies and, consequently, to develop a strategy to include in the
calculations correlations due to the spatial proximity of the amino acids and
to their overall tendency of being conserved in proteins. Making use of a
lattice model to describe protein chains and defining a "true" potential, we
test these strategies by selecting a database of folding model sequences,
deriving the contact potentials from such sequences and comparing them with the
"true" potential. Taking into account correlations allows for a markedly better
prediction of the interaction potentials
Competition between Diffusion and Fragmentation: An Important Evolutionary Process of Nature
We investigate systems of nature where the common physical processes
diffusion and fragmentation compete. We derive a rate equation for the size
distribution of fragments. The equation leads to a third order differential
equation which we solve exactly in terms of Bessel functions. The stationary
state is a universal Bessel distribution described by one parameter, which fits
perfectly experimental data from two very different system of nature, namely,
the distribution of ice crystal sizes from the Greenland ice sheet and the
length distribution of alpha-helices in proteins.Comment: 4 pages, 3 figures, (minor changes
Simple models of protein folding and of non--conventional drug design
While all the information required for the folding of a protein is contained
in its amino acid sequence, one has not yet learned how to extract this
information to predict the three--dimensional, biologically active, native
conformation of a protein whose sequence is known. Using insight obtained from
simple model simulations of the folding of proteins, in particular of the fact
that this phenomenon is essentially controlled by conserved (native) contacts
among (few) strongly interacting ("hot"), as a rule hydrophobic, amino acids,
which also stabilize local elementary structures (LES, hidden, incipient
secondary structures like --helices and --sheets) formed early
in the folding process and leading to the postcritical folding nucleus (i.e.,
the minimum set of native contacts which bring the system pass beyond the
highest free--energy barrier found in the whole folding process) it is possible
to work out a succesful strategy for reading the native structure of designed
proteins from the knowledge of only their amino acid sequence and of the
contact energies among the amino acids. Because LES have undergone millions of
years of evolution to selectively dock to their complementary structures, small
peptides made out of the same amino acids as the LES are expected to
selectively attach to the newly expressed (unfolded) protein and inhibit its
folding, or to the native (fluctuating) native conformation and denaturate it.
These peptides, or their mimetic molecules, can thus be used as effective
non--conventional drugs to those already existing (and directed at neutralizing
the active site of enzymes), displaying the advantage of not suffering from the
uprise of resistance
Potentials of Mean Force for Protein Structure Prediction Vindicated, Formalized and Generalized
Understanding protein structure is of crucial importance in science, medicine
and biotechnology. For about two decades, knowledge based potentials based on
pairwise distances -- so-called "potentials of mean force" (PMFs) -- have been
center stage in the prediction and design of protein structure and the
simulation of protein folding. However, the validity, scope and limitations of
these potentials are still vigorously debated and disputed, and the optimal
choice of the reference state -- a necessary component of these potentials --
is an unsolved problem. PMFs are loosely justified by analogy to the reversible
work theorem in statistical physics, or by a statistical argument based on a
likelihood function. Both justifications are insightful but leave many
questions unanswered. Here, we show for the first time that PMFs can be seen as
approximations to quantities that do have a rigorous probabilistic
justification: they naturally arise when probability distributions over
different features of proteins need to be combined. We call these quantities
reference ratio distributions deriving from the application of the reference
ratio method. This new view is not only of theoretical relevance, but leads to
many insights that are of direct practical use: the reference state is uniquely
defined and does not require external physical insights; the approach can be
generalized beyond pairwise distances to arbitrary features of protein
structure; and it becomes clear for which purposes the use of these quantities
is justified. We illustrate these insights with two applications, involving the
radius of gyration and hydrogen bonding. In the latter case, we also show how
the reference ratio method can be iteratively applied to sculpt an energy
funnel. Our results considerably increase the understanding and scope of energy
functions derived from known biomolecular structures
Initial Results from the Nobeyama Molecular Gas Observations of Distant Bright Galaxies
We present initial results from the CO survey toward high redshift galaxies
using the Nobeyama 45m telescope. Using the new wide bandwidth spectrometer
equipped with a two-beam SIS receiver, we have robust new detections of three
high redshift (z=1.6-3.4) submillimeter galaxies (SXDF 1100.001, SDP9, and
SDP17), one tentative detection (SDSS J160705+533558), and one non-detection
(COSMOS-AzTEC1). The galaxies observed during the commissioning phase are
sources with known spectroscopic redshifts from previous optical or from
wide-band submm spectroscopy. The derived molecular gas mass and line widths
from Gaussian fits are ~10^11 Msun and 430-530 km/s, which are consistent with
previous CO observations of distant submm galaxies and quasars. The
spectrometer that allows a maximum of 32 GHz instantaneous bandwidth will
provide new science capabilities at the Nobeyama 45m telescope, allowing us to
determine redshifts of bright submm selected galaxies without any prior
redshift information.Comment: 4 pages, 1 figure, PASJ Letter Accepte
- …
