5,153 research outputs found
Universal dielectric loss in amorphous solids from simultaneous bias and microwave field
We derive the ac dielectric loss in glasses due to resonant processes created
by two-level systems and a swept electric field bias. It is shown that at
sufficiently large ac fields and bias sweep rates the nonequilibrium loss
tangent created by the two fields approaches a universal maximum determined by
the bare linear dielectric permittivity. In addition this nonequilibrium loss
tangent is derived for a range of bias sweep rates and ac amplitudes and show
that the loss tangent creates a predicted loss function that can be understood
in a Landau-Zener theory and which can be used to extract the TLS density,
dipole moment, and relaxation rate.Comment: To appear in Physical Review Letters, 4 pages, 3 figure
Loss Dependence on Geometry and Applied Power in Superconducting Coplanar Resonators
The loss in superconducting microwave resonators at low-photon number and low
temperatures is not well understood but has implications for achievable
coherence times in superconducting qubits. We have fabricated single-layer
resonators with a high quality factor by patterning a superconducting aluminum
film on a sapphire substrate. Four resonator geometries were studied with
resonant frequencies ranging from 5 to 7 GHz: a quasi-lumped element resonator,
a coplanar strip waveguide resonator, and two hybrid designs that contain both
a coplanar strip and a quasi-lumped element. Transmitted power measurements
were taken at 30 mK as a function of frequency and probe power. We find that
the resonator loss, expressed as the inverse of the internal quality factor,
decreases slowly over four decades of photon number in a manner not merely
explained by loss from a conventional uniform spatial distribution of two-level
systems in an oxide layer on the superconducting surfaces of the resonator.Comment: 4 pages, 5 figures, Submitted to ASC 2010 conference proceeding
The binary fraction of planetary nebula central stars I. A high-precision, I-band excess search
In an attempt to determine how many planetary nebulae derive from binary
interactions, we have started a project to measure their unbiased binary
fraction. This number, when compared to the binary fraction of the presumed
parent population can give a first handle on the origin of planetary nebulae.
By detecting 27 bona fide central stars in the I band we have found that 30% of
our sample have an I band excess between one and a few sigmas, possibly
denoting companions brighter than M3-4V and with separations smaller than
approximately 1000 AU. By accounting for the undetectable companions, we
determine a de-biased binary fraction of 67-78% for all companions at all
separations. We compare this number to a main sequence binary fraction of
(50+/-4)% determined for spectral types F6V-G2V, appropriate if the progenitors
of today's PN central star population is indeed the F6V-G2V stars. The error on
our estimate could be between 10 and 30%. We conclude that the central star
binary fraction may be larger than expected from the putative parent
population. Using the more sensitive J band of a subset of 11 central stars,
the binary fraction is 54% for companions brighter than approximately M5-6V and
with separations smaller than about 900 AU. De-biassing this number we obtain a
binary fraction of 100-107%. The two numbers should be the same and the
discrepancy is likely due to small number statistics.
We also present an accurately vetted compilation of observed main sequence
star magnitudes, colours and masses, which can serve as a reference for future
studies. We also present synthetic colours of hot stars as a function of
temperature (20-170kK) and gravity (log g= 6-8) for Solar and PG1159
compositions.Comment: 22 pages, 6 figures, 12 tables, accepted by MNRA
Note on Comparability of MicroCog Test Forms
This study investigated the differences between the Standard and Short forms of MicroCog by comparing Domain scores for a clinical sample of 351 substance abusers which gave a significant difference between scores on the Spatial Processing Domain. Implications for research and clinical use are discussed
Impact of inter-correlated initial binary parameters on double black hole and neutron star mergers
The distributions of the initial main-sequence binary parameters are one of
the key ingredients in obtaining evolutionary predictions for compact binary
(BH-BH / BH-NS / NS-NS) merger rates. Until now, such calculations were done
under the assumption that initial binary parameter distributions were
independent. Here, we implement empirically derived inter-correlated
distributions of initial binary parameters primary mass (M1), mass ratio (q),
orbital period (P), and eccentricity (e). Unexpectedly, the introduction of
inter-correlated initial binary parameters leads to only a small decrease in
the predicted merger rates by a factor of 2 3 relative to the previously
used non-correlated initial distributions. The formation of compact object
mergers in the isolated classical binary evolution favors initial binaries with
stars of comparable masses (q = 0.5 1) at intermediate orbital periods (log
P (days) = 2 4). New distributions slightly shift the mass ratios towards
smaller values with respect to the previously used flat q distribution, which
is the dominant effect decreasing the rates. New orbital periods only
negligibly increase the number of progenitors. Additionally, we discuss the
uncertainty of merger rate predictions associated with possible variations of
the massive-star initial mass function (IMF). We argue that evolutionary
calculations should be normalized to a star formation rate (SFR) that is
obtained from the observed amount of UV light at wavelength 1500{\AA} (SFR
indicator). In this case, contrary to recent reports, the uncertainty of the
IMF does not affect the rates by more than a factor of 2. Any change to the IMF
slope for massive stars requires a change of SFR in a way that counteracts the
impact of IMF variations on the merger rates. In contrast, we suggest that the
uncertainty in cosmic SFR at low metallicity can be a significant factor at
play.Comment: accepted for publication in A&
A new and unusual LBV-like outburst from a Wolf–Rayet star in the outskirts of M33
MCA-1B (also called UIT003) is a luminous hot star in the western outskirts of M33, classified over 20 yr ago with a spectral type of Ofpe/WN9 and identified then as a candidate luminous blue variable (LBV). Palomar Transient Factory data reveal that this star brightened in 2010, with a light curve resembling that of the classic LBV star AF And in M31. Other Ofpe/WN9 stars have erupted as LBVs, but MCA-1B was unusual because it remained hot. It showed a WN-type spectrum throughout its eruption, whereas LBVs usually get much cooler. MCA-1B showed an almost four-fold increase in bolometric luminosity and a doubling of its radius, but its temperature stayed ≳29 kK. As it faded, it shifted to even hotter temperatures, exhibiting a WN7/WN8-type spectrum, and doubling its wind speed. MCA-1B is reminiscent of some supernova impostors, and its location resembles the isolated environment of SN 2009ip. It is most similar to HD 5980 (in the Small Magellanic Cloud) and GR 290 (also in M33). Whereas these two LBVs exhibited B-type spectra in eruption, MCA-1B is the first clear case where a Wolf–Rayet (WR) spectrum persisted at all times. Together, MCA-1B, HD 5980, and GR 290 constitute a class of WN-type LBVs, distinct from S Doradus LBVs. They are most interesting in the context of LBVs at low metallicity, a possible post-LBV/WR transition in binaries, and as likely Type Ibn supernova progenitors
A New Class of Majoron-Emitting Double-Beta Decays
Motivated by the excess events that have recently been found near the
endpoints of the double beta decay spectra of several elements, we re-examine
models in which double beta decay can proceed through the neutrinoless emission
of massless Nambu-Goldstone bosons (majorons). Noting that models proposed to
date for this process must fine-tune either a scalar mass or a VEV to be less
than 10 keV, we introduce a new kind of majoron which avoids this difficulty by
carrying lepton number . We analyze in detail the requirements that
models of both the conventional and our new type must satisfy if they are to
account for the observed excess events. We find: (1) the electron sum-energy
spectrum can be used to distinguish the two classes of models from one another;
(2) the decay rate for the new models depends on different nuclear matrix
elements than for ordinary majorons; and (3) all models require a (pseudo)
Dirac neutrino, having a mass of a several hundred MeV, which mixes with
.Comment: 43 pages, 10 figures (included), [figure captions are now included
ISS-based Development of Elements and Operations for Robotic Assembly of A Space Solar Power Collector
We present a concept for an ISS-based optical system assembly demonstration designed to advance technologies related to future large in-space optical facilities deployment, including space solar power collectors and large-aperture astronomy telescopes. The large solar power collector problem is not unlike the large astronomical telescope problem, but at least conceptually it should be easier in principle, given the tolerances involved. We strive in this application to leverage heavily the work done on the NASA Optical Testbed Integration on ISS Experiment (OpTIIX) effort to erect a 1.5 m imaging telescope on the International Space Station (ISS). Specifically, we examine a robotic assembly sequence for constructing a large (meter diameter) slightly aspheric or spherical primary reflector, comprised of hexagonal mirror segments affixed to a lightweight rigidizing backplane structure. This approach, together with a structured robot assembler, will be shown to be scalable to the area and areal densities required for large-scale solar concentrator arrays
A Positive Relationship Between Religious Faith and Forgiveness: Faith in the Absence of Data?
Religious faith and beliefs appear to play an important role in the lives of many individuals and are the topic of much research. The present study investigated the relationship between religious faith and forgiveness in a sample (n = 196) of college students. Students were asked to complete the Heartland Forgiveness Scale and the Santa Clara Strength of Religious Faith Questionnaire. Analyses of scores on both measures revealed a positive, significant correlation between these constructs, suggesting that there is a meaningful relationship between religious faith and the tendency to forgive. Implications and directions for further research are discussed
Clustering of a kinesin-14 motor enables processive retrograde microtubule-based transport in plants
Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Plants 1 (2015): 15087, doi:10.1038/nplants.2015.87.The molecular motors kinesin and dynein drive bidirectional motility along
microtubules (MTs) in most eukaryotic cells1,2. Land plants, however, are a notable
exception, since they contain a large number of kinesins but lack cytoplasmic
dynein, the foremost processive retrograde transporter3,4. It remains unclear how
plants achieve retrograde cargo transport without dynein. Here, we have analyzed
the motility of the six members of minus-end-directed kinesin-14 motors in the
moss Physcomitrella patens and found that none are processive as native dimers.
However, when artificially clustered into as little as dimer of dimers, the type-VI
kinesin-14 (a homologue of Arabidopsis KCBP [kinesin-like calmodulin binding
protein]) exhibited highly processive and fast motility (up to 0.6 μm/s). Multiple
kin14-VI dimers attached to liposomes also induced transport of this membrane
cargo over several microns. Consistent with these results, in vivo observations of
GFP-tagged kin14-VI in moss cells revealed fluorescent punctae that moved
processively towards the minus ends of the cytoplasmic MTs. These data suggest
that clustering of a kinesin-14 motor serves as a dynein-independent mechanism for
retrograde transport in plants.This work was supported by
the Human Frontier Science Program, the James A. and Faith Miller Memorial Fund
(MBL), the Laura and Arthur Colwin Endowed Summer Research Fellowship Fund
(MBL), the TORAY Science Foundation, Grants-in-Aid for Scientific Research
(15K14540, MEXT) (G.G), and the NIH (38499; R.D.V).2015-12-2
- …
