1,195 research outputs found

    Direct Characterization of Quantum Dynamics

    Full text link
    The characterization of quantum dynamics is a fundamental and central task in quantum mechanics. This task is typically addressed by quantum process tomography (QPT). Here we present an alternative "direct characterization of quantum dynamics" (DCQD) algorithm. In contrast to all known QPT methods, this algorithm relies on error-detection techniques and does not require any quantum state tomography. We illustrate that, by construction, the DCQD algorithm can be applied to the task of obtaining partial information about quantum dynamics. Furthermore, we argue that the DCQD algorithm is experimentally implementable in a variety of prominent quantum information processing systems, and show how it can be realized in photonic systems with present day technology.Comment: 4 pages, 2 figures, published versio

    A Note on Gravitational Baryogenesis

    Full text link
    The coupling between Ricci scalar curvature and the baryon number current dynamically breaks CPT in an expanding universe and leads to baryon asymmetry. We study the effect of time dependence of equation of state parameter of the FRW universe on this asymmetry.Comment: 10 pages, accepted for publication in Physical Review

    Anomalous modulation of a zero bias peak in a hybrid nanowire-superconductor device

    Full text link
    We report on sub-gap transport measurements of an InAs nanowire coupled to niobium nitride leads at high magnetic fields. We observe a zero-bias anomaly (ZBA) in the differential conductance of the nanowire for certain ranges of magnetic field and chemical potential. The ZBA can oscillate in width with either magnetic field or chemical potential; it can even split and reform. We discuss how our results relate to recent predictions of hybridizing Majorana fermions in semiconducting nanowires, while considering more mundane explanations.Comment: 7 pages, 7 figure

    On the motion of spinning test particles in plane gravitational waves

    Full text link
    The Mathisson-Papapetrou-Dixon equations for a massive spinning test particle in plane gravitational waves are analysed and explicit solutions constructed in terms of solutions of certain linear ordinary differential equations. For harmonic waves this system reduces to a single equation of Mathieu-Hill type. In this case spinning particles may exhibit parametric excitation by gravitational fields. For a spinning test particle scattered by a gravitational wave pulse, the final energy-momentum of the particle may be related to the width, height, polarisation of the wave and spin orientation of the particle.Comment: 11 page

    Chiral excitations of magnetic droplet solitons driven by their own inertia

    Get PDF
    The inertial effects of magnetic solitons play a crucial role in their dynamics and stability. Yet governing their inertial effects is a challenge for their use in real devices. Here, we show how to control the inertial effects of magnetic droplet solitons. Magnetic droplets are strongly nonlinear and localized autosolitons than can form in current-driven nanocontacts. Droplets can be considered as dynamical particles with an effective mass. We show that the dynamical droplet bears a second excitation under its own inertia. These excitations comprise a chiral profile, and appear when the droplet resists the force induced by the Oersted field of the current injected into the nanocontact. We reveal the role of the spin torque on the excitation of these chiral modes and we show how to control these modes using the current and the field.Comment: 10 page

    The effect of geometry on charge confinement in three dimensions

    Get PDF
    We show that, in contrast to the flat case, the Maxwell theory is not confining in the background of the three dimensional BTZ black-hole (covering space). We also study the effect of the curvature on screening behavior of Maxwell-Chern-Simons model in this space-time.Comment: 8 pages. To be published in Europhysics Letter
    corecore