5,150 research outputs found
Effect of Bohm potential on a charged gas
Bohm's interpretation of Quantum Mechanics leads to the derivation of a
Quantum Kinetic Equation (QKE): in the present work, propagation of waves in
charged quantum gases is investigated starting from this QKE. Dispersion
relations are derived for fully and weakly degenerate fermions and bosons
(these latter above critical temperature), and the differences underlined. Use
of a kinetic equation permits investigation of "Landau-type" damping: it is
found that the presence of damping in fermion gases is dependent upon the
degree of degeneracy, whereas it is always present in boson gases. In fully
degenerate fermions a phenomenon appears that is akin to the "zero sound"
propagation.Comment: 11 pages, no figures, pdf forma
IRAS 23385+6053: a candidate protostellar massive object
We present the results of a multi-line and continuum study towards the source
IRAS 23385+6053,performed with the IRAM-30m telescope, the Plateau de Bure
Interferometer, the Very Large Array Interferometer and the James Clerk Maxwell
Telescope. The new results confirm our earlier findings, namely that IRAS
23385+6053 is a good candidate high-mass protostellar object, precursor of an
ultracompact H region. The source is roughly composed of two regions: a
molecular core pc in size, with a temperature of K
and an H volume density of the order of 10 cm, and an
extended halo of diameter 0.4 pc, with an average kinetic temperature of
K and H volume density of the order of 10 cm. The
core temperature is much smaller than what is typically found in molecular
cores of the same diameter surrounding massive ZAMS stars. We deduce that the
core luminosity is between 150 and , and we believe
that the upper limit is near the ``true'' source luminosity. Moreover, by
comparing the H volume density obtained at different radii from the IRAS
source, we find that the halo has a density profile of the type . This suggests that the source is gravitationally
unstable. Finally, we demonstrate that the temperature at the core surface is
consistent with a core luminosity of and conclude that we
might be observing a protostar still accreting material from its parental
cloud, whose mass at present is .Comment: 18 pages, 20 figure
Growth and equilibrium size of water droplets in air
A model is presented to describe the growth in time of the average water drop in supersaturated air, and predict their radius at equilibrium. Many previous works consider the growth of an isolated drop, whereas in the present work
the effect of the presence of a large number of drops, with the ensuing depletion in water content in the surrounding air, is considered: it is shown that the effect of depletion is crucial to obtain the equilibrium radius. Preliminary results, obtained under some simplifying assumptions, are presented: expressions accounting for this
depletion effect are given for the time evolution of the liquid-water temperature and of the number of water molecules in the drop and drop radius near equilibrium, and
for their asymptotic equilibrium values
A 100 pc Elliptical and Twisted Ring of Cold and Dense Molecular Clouds Revealed by Herschel Around the Galactic Center
Thermal images of cold dust in the Central Molecular Zone of the Milky Way, obtained with the far-infrared cameras on board the Herschel satellite, reveal a ~3 × 10^7 M_☉ ring of dense and cold clouds orbiting the Galactic center. Using a simple toy model, an elliptical shape having semi-major axes of 100 and 60 pc is deduced. The major axis of this 100 pc ring is inclined by about 40° with respect to the plane of the sky and is oriented perpendicular to the major axes of the Galactic Bar. The 100 pc ring appears to trace the system of stable x_2 orbits predicted for the barred Galactic potential. Sgr A⋆ is displaced with respect to the geometrical center of symmetry of the ring. The ring is twisted and its morphology suggests a flattening ratio of 2 for the Galactic potential, which is in good agreement with the bulge flattening ratio derived from the 2MASS data
Not a galaxy: IRAS 04186+5143, a new young stellar cluster in the outer Galaxy
We report the discovery of a new young stellar cluster in the outer Galaxy
located at the position of an IRAS PSC source that has been previously
mis-identified as an external galaxy. The cluster is seen in our near-infrared
imaging towards IRAS 04186+5143 and in archive Spitzer images confirming the
young stellar nature of the sources detected. There is also evidence of
sub-clustering seen in the spatial distributions of young stars and of gas and
dust.
Near- and mid-infrared photometry indicates that the stars exhibit colours
compatible with reddening by interstellar and circumstellar dust and are likely
to be low- and intermediate-mass YSOs with a large proportion of Class I YSOs.
Ammonia and CO lines were detected, with the CO emission well centred near
the position of the richest part of the cluster. The velocity of the CO and
NH lines indicates that the gas is Galactic and located at a distance of
about 5.5 kpc, in the outer Galaxy.
Herschel data of this region characterise the dust environment of this
molecular cloud core where the young cluster is embedded. We derive masses,
luminosities and temperatures of the molecular clumps where the young stars
reside and discuss their evolutionary stages.Comment: 14 pages, 15 figure
The molecular complex associated with the Galactic HII region Sh2-90: a possible site of triggered star formation
We investigate the star formation activity in the molecular complex
associated with the Galactic HII region Sh2-90, using radio-continuum maps
obtained at 1280 MHz and 610 MHz, Herschel Hi-GAL observations at 70 -- 500
microns, and deep near-infrared observation at JHK bands, along with Spitzer
observations. Sh2-90 presents a bubble morphology in the mid-IR (size ~ 0.9 pc
x 1.6 pc). Radio observations suggest it is an evolved HII region with an
electron density ~ 144 cm^-3, emission measure ~ 6.7 x 10^4 cm^-6 pc and a
ionized mass ~ 55 Msun. From Hi-GAL observations it is found that the HII
region is part of an elongated extended molecular cloud (size ~ 5.6 pc x 9.7
pc, H_2 column density >= 3 x 10^21 cm^-2 and dust temperature 18 -- 27 K) of
total mass >= 1 x 10^4 Msun. We identify the ionizing cluster of Sh2-90, the
main exciting star being an O8--O9 V star. Five cold dust clumps (mass ~ 8 --
95 Msun), four mid-IR blobs around B stars, and a compact HII region are found
at the edge of the bubble.The velocity information derived from CO (J=3-2) data
cubes suggests that most of them are associated with the Sh2-90 region. 129
YSOs are identified (Class I, Class II, and near-IR excess sources). The
majority of the YSOs are low mass (<= 3 Msun) sources and they are distributed
mostly in the regions of high column density. Four candidate Class 0/I MYSOs
have been found; they will possibly evolve to stars of mass >= 15 Msun. We
suggest multi-generation star formation is present in the complex. From the
evidences of interaction, the time scales involved and the evolutionary status
of stellar/protostellar sources, we argue that the star formation at the
immediate border/edges of Sh2-90 might have been triggered by the expanding HII
region. However, several young sources in this complex are probably formed by
some other processes.Comment: 22 pages, 22 figures, accepted for publication in Astronomy and
Astrophysic
- …
