1,314 research outputs found

    Formation and Interaction of Membrane Tubes

    Full text link
    We show that the formation of membrane tubes (or membrane tethers), which is a crucial step in many biological processes, is highly non-trivial and involves first order shape transitions. The force exerted by an emerging tube is a non-monotonic function of its length. We point out that tubes attract each other, which eventually leads to their coalescence. We also show that detached tubes behave like semiflexible filaments with a rather short persistence length. We suggest that these properties play an important role in the formation and structure of tubular organelles.Comment: 4 pages, 3 figure

    Rare Variants in PLXNA4 and Parkinson's Disease.

    Get PDF
    Approximately 20% of individuals with Parkinson's disease (PD) report a positive family history. Yet, a large portion of causal and disease-modifying variants is still unknown. We used exome sequencing in two affected individuals from a family with late-onset familial PD followed by frequency assessment in 975 PD cases and 1014 ethnically-matched controls and linkage analysis to identify potentially causal variants. Based on the predicted penetrance and the frequencies, a variant in PLXNA4 proved to be the best candidate and PLXNA4 was screened for additional variants in 862 PD cases and 940 controls, revealing an excess of rare non-synonymous coding variants in PLXNA4 in individuals with PD. Although we cannot conclude that the variant in PLXNA4 is indeed the causative variant, these findings are interesting in the light of a surfacing role of axonal guidance mechanisms in neurodegenerative disorders but, at the same time, highlight the difficulties encountered in the study of rare variants identified by next-generation sequencing in diseases with autosomal dominant or complex patterns of inheritance

    Tau protein, A beta 42 and S-100B protein in cerebrospinal fluid of patients with dementia with Lewy bodies

    Get PDF
    The intra vitam diagnosis of dementia with Lewy bodies (DLB) is still based on clinical grounds. So far no technical investigations have been available to support this diagnosis. As for tau protein and beta-amyloid((1-42)) (Abeta42), promising results for the diagnosis of Alzheimer's disease ( AD) have been reported; we evaluated these markers and S-100B protein in cerebrospinal fluid (CSF), using a set of commercially available assays, of 71 patients with DLB, 67 patients with AD and 41 nondemented controls (NDC) for their differential diagnostic relevance. Patients with DLB showed significantly lower tau protein values compared to AD but with a high overlap of values. More prominent differences were observed in the comparison of DLB patients with all three clinical core features and AD patients. Abeta42 levels were decreased in the DLB and AD groups versus NDC, without significant subgroup differences. S-100B levels were not significantly different between the groups. Tau protein levels in CSF may contribute to the clinical distinction between DLB and AD, but the value of the markers is still limited especially due to mixed pathology. We conclude that more specific markers have to be established for the differentiation of these diseases. Copyright (C) 2005 S. Karger AG, Basel

    Contrasting multiproxy reconstructions of surface ocean hydrography in the Agulhas Corridor and implications for the Agulhas Leakage during the last 345,000 years

    Get PDF
    Planktonic δ18O and Mg/Ca-derived sea surface temperature (SST) records from the Agulhas Corridor off South Africa display a progressive increase of SST during glacial periods of the last three climatic cycles. The SST increases of up to 4°C coincide with increased abundance of subtropical planktonic foraminiferal marker species which indicates a progressive warming due to an increased influence of subtropical waters at the core sites. Mg/Ca-derived SST maximizes during glacial maxima and glacial Terminations to values about 2.5°C above full-interglacial SST. The paired planktonic δ18O and Mg/Ca-derived SST records yield glacial seawater δ18O anomalies of up to 0.8‰, indicating measurably higher surface salinities during these periods. The SST pattern along our record is markedly different from a U37K'-derived SST record at a nearby core location in the Agulhas Corridor that displays SST maxima only during glacial Terminations. Possible explanations are lateral alkenone advection by the vigorous regional ocean currents or the development of SST contrasts during glacials in association with seasonal changes of Agulhas water transports and lateral shifts of the Agulhas retroflection. The different SST reconstructions derived from U37K' and Mg/Ca pose a significant challenge to the interpretation of the proxy records and demonstrate that the reconstruction of the Agulhas Current and interocean salt leakage is not as straightforward as previously suggested

    Deglacial records of terrigenous organic matter accumulation off the Yukon and Amur rivers based on lignin phenols and long-chain n-alkanes

    Get PDF
    Arctic warming and sea level change will lead to widespread permafrost thaw and subsequent mobilization. Sedimentary records of past warming events during the Last Glacial-interglacial transition can be used to study the conditions under which permafrost mobilization occurs and which changes in vegetation on land are associated with such warming. The Amur and Yukon rivers discharging into the Okhotsk and Bering seas, respectively, drain catchments that have been, or remain until today, covered by permafrost. Here we study two marine sediment cores recovered off the mouths of these rivers. We use lignin phenols as biomarkers, which are excellently suited for the reconstruction of terrestrial higher plant vegetation, and compare them with previously published lipid biomarker data. We find that in the Yukon basin, vegetation change and wetland expansion began already in the early deglaciation (ED; 14.6-19g€¯ka). This timing is different from observed changes in the Okhotsk Sea reflecting input from the Amur basin, where wetland expansion and vegetation change occurred later in the Pre-Boreal (PB). In the two basins, angiosperm contribution and wetland extent all reached maxima during the PB, both decreasing and stabilizing after the PB. The permafrost of the Amur basin began to become remobilized in the PB. Retreat of sea ice coupled with increased sea surface temperatures in the Bering Sea during the ED might have promoted early permafrost mobilization. In modern Arctic river systems, lignin and n-alkanes are transported from land to the ocean via different pathways, i.e., surface runoff vs. erosion of deeper deposits, respectively. However, accumulation rates of lignin phenols and lipids are similar in our records, suggesting that under conditions of rapid sea level rise and shelf flooding, both types of terrestrial biomarkers are delivered by the same transport pathway. This finding suggests that the fate of terrigenous organic matter in the Arctic differs on both temporal and spatial scales
    corecore