2,660 research outputs found

    Two Gap State Density in MgB2_{2}: A True Bulk Property or A Proximity Effect?

    Full text link
    We report on the temperature dependence of the quasiparticle density of states (DOS) in the simple binary compound MgB2 directly measured using scanning tunneling microscope (STM). To achieve high quality tunneling conditions, a small crystal of MgB2 is used as a tip in the STM experiment. The ``sample'' is chosen to be a 2H-NbSe2 single crystal presenting an atomically flat surface. At low temperature the tunneling conductance spectra show a gap at the Fermi energy followed by two well-pronounced conductance peaks on each side. They appear at voltages VS±3.8_{S}\simeq \pm 3.8 mV and VL±7.8_{L}\simeq \pm 7.8 mV. With rising temperature both peaks disappear at the Tc of the bulk MgB2, a behavior consistent with the model of two-gap superconductivity. The explanation of the double-peak structure in terms of a particular proximity effect is also discussed.Comment: 4 pages, 3 figure

    BaCu3O4: High Temperature Magnetic Order in One-Dimensional S=1/2 Diamond-Chains

    Full text link
    The magnetic properties of the alkaline earth oxocuprate BaCu3O4 are investigated. We show that the characteristic Cu3O4 layers of this material can be described with diamond chains of antiferromagnetically coupled Cu 1/2 spins with only a weak coupling between two adjacent chains. These Cu3O4 layers seem to represent a so far unique system of weakly coupled one-dimensional magnetic objects where the local AF ordering of the Cu2+ ions leads to an actual net magnetic moment of an isolated diamond chain. We demonstrate a magnetic transition at a high N\'eel temperature T_{N}=336 K

    Electronic Raman scattering on under-doped Hg-1223 high-Tc superconductors:investigations on the symmetry of the order parameter

    Full text link
    In order to obtain high quality, reliable electronic Raman spectra of a high-Tc superconductor compound, we have studied strongly under-doped HgBa2Ca2Cu3O8+d. This choice was made such as to i)minimize oxygen disorder in the Hg-plane generated by oxygen doping ii) avoid the need of phonon background subtraction from the raw data iii)eliminate traces of parasitic phases identified and monitored on the crystal surface. Under these experimental conditions we are able to present the pure electronic Raman response function in the B2g, B1g, A1g+B2g and A1g+B1g channels. The B2g spectrum exhibits a linear frequency dependence at low energy whereas the B1g one shows a cubic-like dependence. The B2g and B1g spectra display two well defined maxima at 5.6kBTc and 9kBTc respectively. In mixed A1g channels an intense electronic peak centered around 6.4 kBTc is observed. The low energy parts of the spectra correspond to the electronic response expected for a pure dx2-y2 gap symmetry and can be fitted up to the gap energy for the B1g channel. However, in the upper parts, the relative position of the B1g and B2g peaks needs expanding the B2g Raman vertex to second order Fermi surface harmonics to fit the data with the dx2-y2 model. The sharper and more intense A1g peak appears to challenge the Coulomb screening efficiency present for this channel. As compared to previous data on more optimally doped, less stoichiometric Hg-1223 compounds, this work reconciles the electronic Raman spectra of under- doped Hg-1223 crystals with the dx2-y2 model, provided that the oxygen doping is not too strong. This apparent extreme sensitivity of the electronic Raman spectra to the low lying excitations induced by oxygen doping in the superconducting state is emphasized here and remains an open question.Comment: 12 pages, 5 figure

    An information-bearing seed for nucleating algorithmic self-assembly

    Get PDF
    Self-assembly creates natural mineral, chemical, and biological structures of great complexity. Often, the same starting materials have the potential to form an infinite variety of distinct structures; information in a seed molecule can determine which form is grown as well as where and when. These phenomena can be exploited to program the growth of complex supramolecular structures, as demonstrated by the algorithmic self-assembly of DNA tiles. However, the lack of effective seeds has limited the reliability and yield of algorithmic crystals. Here, we present a programmable DNA origami seed that can display up to 32 distinct binding sites and demonstrate the use of seeds to nucleate three types of algorithmic crystals. In the simplest case, the starting materials are a set of tiles that can form crystalline ribbons of any width; the seed directs assembly of a chosen width with >90% yield. Increased structural diversity is obtained by using tiles that copy a binary string from layer to layer; the seed specifies the initial string and triggers growth under near-optimal conditions where the bit copying error rate is 17 kb of sequence information. In sum, this work demonstrates how DNA origami seeds enable the easy, high-yield, low-error-rate growth of algorithmic crystals as a route toward programmable bottom-up fabrication

    Orbit equivalence rigidity for ergodic actions of the mapping class group

    Full text link
    We establish orbit equivalence rigidity for any ergodic, essentially free and measure-preserving action on a standard Borel space with a finite positive measure of the mapping class group for a compact orientable surface with higher complexity. We prove similar rigidity results for a finite direct product of mapping class groups as well.Comment: 11 pages, title changed, a part of contents remove

    Fermi Velocity Spectrum and Incipient Magnetism in TiBe2

    Full text link
    We address the origin of the incipient magnetism in TiBe2_2 through precise first principles calculations, which overestimate the ferromagnetic tendency and therefore require correction to account for spin fluctuations. TiBe2_2 has sharp fine structure in its electronic density of states, with a van Hove singularity only 3 meV above the Fermi level. Similarly to the isovalent weak ferromagnet ZrZn2_2, it is flat bands along the K-W-U lines of hexagonal face of the fcc Brillouin zone make the system prone to magnetism, and more so if electrons are added. We find that the Moriya BB coefficient (multiplying ωq\frac{\omega}{q} in the fluctuation susceptibility Δχ(q,ω)\Delta \chi(q,\omega)) is divergent when the velocity vanishes at a point on the Fermi surface, which is very close (3 meV) to occurring in TiBe2_2. In exploring how the FM instability (the qq=0 Stoner enhancement is S60S\approx 60) might be suppressed by fluctuations in TiBe2_2, we calculate that the Moriya A coefficient (of q2q^2) is negative, so qq=0 is not the primary instability. Explicit calculation of χo(q)\chi_o(q) shows that its maximum occurs at the X point (1,0,0)2πa(1,0,0)\frac{2\pi}{a}; TiBe2_2 is thus an incipient {\it anti}ferromagnet rather than ferromagnet as has been supposed. We further show that simple temperature smearing of the peak accounts for most of the temperature dependence of the susceptibility, which previously had been attributed to local moments (via a Curie-Weiss fit), and that energy dependence of the density of states also strongly affects the magnetic field variation of χ\chi

    Nonanalytic behavior of the spin susceptibility in clean Fermi systems

    Get PDF
    The wavevector and temperature dependent static spin susceptibility, \chi_s(Q,T), of clean interacting Fermi systems is considered in dimensions 1\leq d \leq 3. We show that at zero temperature \chi_s is a nonanalytic function of |Q|, with the leading nonanalyticity being |Q|^{d-1} for 1<d<3, and Q^2\ln|Q| for d=3. For the homogeneous spin susceptibility we find a nonanalytic temperature dependence T^{d-1} for 1<d<3. We give qualitative mode-mode coupling arguments to that effect, and corroborate these arguments by a perturbative calculation to second order in the electron-electron interaction amplitude. The implications of this, in particular for itinerant ferromagnetism, are discussed. We also point out the relation between our findings and established perturbative results for 1-d systems, as well as for the temperature dependence of \chi_s(Q=0) in d=3.Comment: 12pp., REVTeX, 5 eps figures, final version as publishe

    A core genetic module : the Mixed Feedback Loop

    Full text link
    The so-called Mixed Feedback Loop (MFL) is a small two-gene network where protein A regulates the transcription of protein B and the two proteins form a heterodimer. It has been found to be statistically over-represented in statistical analyses of gene and protein interaction databases and to lie at the core of several computer-generated genetic networks. Here, we propose and mathematically study a model of the MFL and show that, by itself, it can serve both as a bistable switch and as a clock (an oscillator) depending on kinetic parameters. The MFL phase diagram as well as a detailed description of the nonlinear oscillation regime are presented and some biological examples are discussed. The results emphasize the role of protein interactions in the function of genetic modules and the usefulness of modelling RNA dynamics explicitly.Comment: To be published in Physical Review

    Horizontal partial laryngectomy for supraglottic squamous cell carcinoma

    Get PDF
    Between 1981-1999, 75 patients treated for supraglottic SCC with horizontal supraglottic laryngectomy (HSL) at the Otolaryngology Head and Neck Surgery Department of Lausanne University Hospital were retrospectively studied. There were 16 patients with T1, 46 with T2 and 13 with T3 tumors. Among these, 16 patients (21%) had clinical neck disease corresponding to stage I, II, III and IV in 12, 39, 18 and 6 patients, respectively. All patients had HSL. Most patients had either elective or therapeutic bilateral level II-IV selective neck dissection. Six patients (8%) with advanced neck disease had ipsilateral radical and controlateral elective II-IV selective neck dissections. Adjuvant radiotherapy was given to 25 patients (30%) for either positive surgical margins (n=8), pathological nodal status (n=14) or both (n=3). Median follow-up was 48months (range, 24-199). Five-year disease-specific survival and locoregional and local control were 92, 90 and 92.5%, respectively. Among five patients who were diagnosed with local recurrence, one had a total laryngectomy (1.4%); the others were treated by endoscopic laser surgery. Two patients had both a local and regional recurrence. They were salvaged with combined surgery and radiotherapy, but eventually died of their disease. Cartilage infiltration seems to influence both local control (P=0.03) and disease-specific survival (P=0.06). There was a trend for worse survival with pathological node involvement (P=0.15) and extralaryngeal extension of the cancer (P=0.1). All patients except one recovered a close to normal function after the treatment. Aspiration was present in 16 patients (26%) in the early postoperative period. A median of 16days (7-9) was necessary to recover a close to normal diet. Decannulation took a median of 17days (8-93). Seven patients kept a tracheotomy tube for up to 3months because of persistent aspiration. There was no permanent tracheostomy or total laryngectomy for functional purposes. Horizontal supraglottic laryngectomy remains an adequate therapeutic alternative for supraglottic squamous cell carcinoma, offering an excellent oncological outcome. The postoperative functional morbidity is substantial, indicating the need for careful patient selection, but good laryngeal function recovery is the rule. The surgical alternative is endoscopic laser surgery, which may offer comparable oncological results with less functional morbidity. Nevertheless, these two different techniques need to be compared prospectivel
    corecore