8,999 research outputs found
Begin, After, and Later: a Maximal Decidable Interval Temporal Logic
Interval temporal logics (ITLs) are logics for reasoning about temporal
statements expressed over intervals, i.e., periods of time. The most famous ITL
studied so far is Halpern and Shoham's HS, which is the logic of the thirteen
Allen's interval relations. Unfortunately, HS and most of its fragments have an
undecidable satisfiability problem. This discouraged the research in this area
until recently, when a number non-trivial decidable ITLs have been discovered.
This paper is a contribution towards the complete classification of all
different fragments of HS. We consider different combinations of the interval
relations Begins, After, Later and their inverses Abar, Bbar, and Lbar. We know
from previous works that the combination ABBbarAbar is decidable only when
finite domains are considered (and undecidable elsewhere), and that ABBbar is
decidable over the natural numbers. We extend these results by showing that
decidability of ABBar can be further extended to capture the language
ABBbarLbar, which lays in between ABBar and ABBbarAbar, and that turns out to
be maximal w.r.t decidability over strongly discrete linear orders (e.g. finite
orders, the naturals, the integers). We also prove that the proposed decision
procedure is optimal with respect to the complexity class
Basic properties of nonsmooth Hormander's vector fields and Poincare's inequality
We consider a family of vector fields defined in some bounded domain of R^p,
and we assume that they satisfy Hormander's rank condition of some step r, and
that their coefficients have r-1 continuous derivatives. We extend to this
nonsmooth context some results which are well-known for smooth Hormander's
vector fields, namely: some basic properties of the distance induced by the
vector fields, the doubling condition, Chow's connectivity theorem, and, under
the stronger assumption that the coefficients belong to C^{r-1,1}, Poincare's
inequality. By known results, these facts also imply a Sobolev embedding. All
these tools allow to draw some consequences about second order differential
operators modeled on these nonsmooth Hormander's vector fields.Comment: 60 pages, LaTeX; Section 6 added and Section 7 (6 in the previous
version) changed. Some references adde
Generalized Jacobi identities and ball-box theorem for horizontally regular vector fields
We consider a family of vector fields and we assume a horizontal regularity
on their derivatives. We discuss the notion of commutator showing that
different definitions agree. We apply our results to the proof of a ball-box
theorem and Poincar\'e inequality for nonsmooth H\"ormander vector fields.Comment: arXiv admin note: material from arXiv:1106.2410v1, now three separate
articles arXiv:1106.2410v2, arXiv:1201.5228, arXiv:1201.520
Replicated Bethe Free Energy: A Variational Principle behind Survey Propagation
A scheme to provide various mean-field-type approximation algorithms is
presented by employing the Bethe free energy formalism to a family of
replicated systems in conjunction with analytical continuation with respect to
the number of replicas. In the scheme, survey propagation (SP), which is an
efficient algorithm developed recently for analyzing the microscopic properties
of glassy states for a fixed sample of disordered systems, can be reproduced by
assuming the simplest replica symmetry on stationary points of the replicated
Bethe free energy. Belief propagation and generalized SP can also be offered in
the identical framework under assumptions of the highest and broken replica
symmetries, respectively.Comment: appeared in Journal of the Physical Society of Japan 74, 2133-2136
(2005
On Spin-Glass Complexity
We study the quenched complexity in spin-glass mean-field models satisfying
the Becchi-Rouet-Stora-Tyutin supersymmetry. The outcome of such study,
consistent with recent numerical results, allows, in principle, to conjecture
the absence of any supersymmetric contribution to the complexity in the
Sherrington-Kirkpatrick model. The same analysis can be applied to any model
with a Full Replica Symmetry Breaking phase, e.g. the Ising -spin model
below the Gardner temperature. The existence of different solutions, breaking
the supersymmetry, is also discussed.Comment: 4 pages, 2 figures; Text changed in some parts, typos corrected,
Refs. [17],[21] and [22] added, two Refs. remove
Random subcubes as a toy model for constraint satisfaction problems
We present an exactly solvable random-subcube model inspired by the structure
of hard constraint satisfaction and optimization problems. Our model reproduces
the structure of the solution space of the random k-satisfiability and
k-coloring problems, and undergoes the same phase transitions as these
problems. The comparison becomes quantitative in the large-k limit. Distance
properties, as well the x-satisfiability threshold, are studied. The model is
also generalized to define a continuous energy landscape useful for studying
several aspects of glassy dynamics.Comment: 21 pages, 4 figure
Probabilistic Reconstruction in Compressed Sensing: Algorithms, Phase Diagrams, and Threshold Achieving Matrices
Compressed sensing is a signal processing method that acquires data directly
in a compressed form. This allows one to make less measurements than what was
considered necessary to record a signal, enabling faster or more precise
measurement protocols in a wide range of applications. Using an
interdisciplinary approach, we have recently proposed in [arXiv:1109.4424] a
strategy that allows compressed sensing to be performed at acquisition rates
approaching to the theoretical optimal limits. In this paper, we give a more
thorough presentation of our approach, and introduce many new results. We
present the probabilistic approach to reconstruction and discuss its optimality
and robustness. We detail the derivation of the message passing algorithm for
reconstruction and expectation max- imization learning of signal-model
parameters. We further develop the asymptotic analysis of the corresponding
phase diagrams with and without measurement noise, for different distribution
of signals, and discuss the best possible reconstruction performances
regardless of the algorithm. We also present new efficient seeding matrices,
test them on synthetic data and analyze their performance asymptotically.Comment: 42 pages, 37 figures, 3 appendixe
On the cavity method for decimated random constraint satisfaction problems and the analysis of belief propagation guided decimation algorithms
We introduce a version of the cavity method for diluted mean-field spin
models that allows the computation of thermodynamic quantities similar to the
Franz-Parisi quenched potential in sparse random graph models. This method is
developed in the particular case of partially decimated random constraint
satisfaction problems. This allows to develop a theoretical understanding of a
class of algorithms for solving constraint satisfaction problems, in which
elementary degrees of freedom are sequentially assigned according to the
results of a message passing procedure (belief-propagation). We confront this
theoretical analysis to the results of extensive numerical simulations.Comment: 32 pages, 24 figure
An Optimal Decision Procedure for MPNL over the Integers
Interval temporal logics provide a natural framework for qualitative and
quantitative temporal reason- ing over interval structures, where the truth of
formulae is defined over intervals rather than points. In this paper, we study
the complexity of the satisfiability problem for Metric Propositional Neigh-
borhood Logic (MPNL). MPNL features two modalities to access intervals "to the
left" and "to the right" of the current one, respectively, plus an infinite set
of length constraints. MPNL, interpreted over the naturals, has been recently
shown to be decidable by a doubly exponential procedure. We improve such a
result by proving that MPNL is actually EXPSPACE-complete (even when length
constraints are encoded in binary), when interpreted over finite structures,
the naturals, and the in- tegers, by developing an EXPSPACE decision procedure
for MPNL over the integers, which can be easily tailored to finite linear
orders and the naturals (EXPSPACE-hardness was already known).Comment: In Proceedings GandALF 2011, arXiv:1106.081
Soft Concurrent Constraint Programming
Soft constraints extend classical constraints to represent multiple
consistency levels, and thus provide a way to express preferences, fuzziness,
and uncertainty. While there are many soft constraint solving formalisms, even
distributed ones, by now there seems to be no concurrent programming framework
where soft constraints can be handled. In this paper we show how the classical
concurrent constraint (cc) programming framework can work with soft
constraints, and we also propose an extension of cc languages which can use
soft constraints to prune and direct the search for a solution. We believe that
this new programming paradigm, called soft cc (scc), can be also very useful in
many web-related scenarios. In fact, the language level allows web agents to
express their interaction and negotiation protocols, and also to post their
requests in terms of preferences, and the underlying soft constraint solver can
find an agreement among the agents even if their requests are incompatible.Comment: 25 pages, 4 figures, submitted to the ACM Transactions on
Computational Logic (TOCL), zipped file
- …
