8,999 research outputs found

    Begin, After, and Later: a Maximal Decidable Interval Temporal Logic

    Full text link
    Interval temporal logics (ITLs) are logics for reasoning about temporal statements expressed over intervals, i.e., periods of time. The most famous ITL studied so far is Halpern and Shoham's HS, which is the logic of the thirteen Allen's interval relations. Unfortunately, HS and most of its fragments have an undecidable satisfiability problem. This discouraged the research in this area until recently, when a number non-trivial decidable ITLs have been discovered. This paper is a contribution towards the complete classification of all different fragments of HS. We consider different combinations of the interval relations Begins, After, Later and their inverses Abar, Bbar, and Lbar. We know from previous works that the combination ABBbarAbar is decidable only when finite domains are considered (and undecidable elsewhere), and that ABBbar is decidable over the natural numbers. We extend these results by showing that decidability of ABBar can be further extended to capture the language ABBbarLbar, which lays in between ABBar and ABBbarAbar, and that turns out to be maximal w.r.t decidability over strongly discrete linear orders (e.g. finite orders, the naturals, the integers). We also prove that the proposed decision procedure is optimal with respect to the complexity class

    Basic properties of nonsmooth Hormander's vector fields and Poincare's inequality

    Full text link
    We consider a family of vector fields defined in some bounded domain of R^p, and we assume that they satisfy Hormander's rank condition of some step r, and that their coefficients have r-1 continuous derivatives. We extend to this nonsmooth context some results which are well-known for smooth Hormander's vector fields, namely: some basic properties of the distance induced by the vector fields, the doubling condition, Chow's connectivity theorem, and, under the stronger assumption that the coefficients belong to C^{r-1,1}, Poincare's inequality. By known results, these facts also imply a Sobolev embedding. All these tools allow to draw some consequences about second order differential operators modeled on these nonsmooth Hormander's vector fields.Comment: 60 pages, LaTeX; Section 6 added and Section 7 (6 in the previous version) changed. Some references adde

    Generalized Jacobi identities and ball-box theorem for horizontally regular vector fields

    Full text link
    We consider a family of vector fields and we assume a horizontal regularity on their derivatives. We discuss the notion of commutator showing that different definitions agree. We apply our results to the proof of a ball-box theorem and Poincar\'e inequality for nonsmooth H\"ormander vector fields.Comment: arXiv admin note: material from arXiv:1106.2410v1, now three separate articles arXiv:1106.2410v2, arXiv:1201.5228, arXiv:1201.520

    Replicated Bethe Free Energy: A Variational Principle behind Survey Propagation

    Full text link
    A scheme to provide various mean-field-type approximation algorithms is presented by employing the Bethe free energy formalism to a family of replicated systems in conjunction with analytical continuation with respect to the number of replicas. In the scheme, survey propagation (SP), which is an efficient algorithm developed recently for analyzing the microscopic properties of glassy states for a fixed sample of disordered systems, can be reproduced by assuming the simplest replica symmetry on stationary points of the replicated Bethe free energy. Belief propagation and generalized SP can also be offered in the identical framework under assumptions of the highest and broken replica symmetries, respectively.Comment: appeared in Journal of the Physical Society of Japan 74, 2133-2136 (2005

    On Spin-Glass Complexity

    Full text link
    We study the quenched complexity in spin-glass mean-field models satisfying the Becchi-Rouet-Stora-Tyutin supersymmetry. The outcome of such study, consistent with recent numerical results, allows, in principle, to conjecture the absence of any supersymmetric contribution to the complexity in the Sherrington-Kirkpatrick model. The same analysis can be applied to any model with a Full Replica Symmetry Breaking phase, e.g. the Ising pp-spin model below the Gardner temperature. The existence of different solutions, breaking the supersymmetry, is also discussed.Comment: 4 pages, 2 figures; Text changed in some parts, typos corrected, Refs. [17],[21] and [22] added, two Refs. remove

    Random subcubes as a toy model for constraint satisfaction problems

    Full text link
    We present an exactly solvable random-subcube model inspired by the structure of hard constraint satisfaction and optimization problems. Our model reproduces the structure of the solution space of the random k-satisfiability and k-coloring problems, and undergoes the same phase transitions as these problems. The comparison becomes quantitative in the large-k limit. Distance properties, as well the x-satisfiability threshold, are studied. The model is also generalized to define a continuous energy landscape useful for studying several aspects of glassy dynamics.Comment: 21 pages, 4 figure

    Probabilistic Reconstruction in Compressed Sensing: Algorithms, Phase Diagrams, and Threshold Achieving Matrices

    Full text link
    Compressed sensing is a signal processing method that acquires data directly in a compressed form. This allows one to make less measurements than what was considered necessary to record a signal, enabling faster or more precise measurement protocols in a wide range of applications. Using an interdisciplinary approach, we have recently proposed in [arXiv:1109.4424] a strategy that allows compressed sensing to be performed at acquisition rates approaching to the theoretical optimal limits. In this paper, we give a more thorough presentation of our approach, and introduce many new results. We present the probabilistic approach to reconstruction and discuss its optimality and robustness. We detail the derivation of the message passing algorithm for reconstruction and expectation max- imization learning of signal-model parameters. We further develop the asymptotic analysis of the corresponding phase diagrams with and without measurement noise, for different distribution of signals, and discuss the best possible reconstruction performances regardless of the algorithm. We also present new efficient seeding matrices, test them on synthetic data and analyze their performance asymptotically.Comment: 42 pages, 37 figures, 3 appendixe

    On the cavity method for decimated random constraint satisfaction problems and the analysis of belief propagation guided decimation algorithms

    Full text link
    We introduce a version of the cavity method for diluted mean-field spin models that allows the computation of thermodynamic quantities similar to the Franz-Parisi quenched potential in sparse random graph models. This method is developed in the particular case of partially decimated random constraint satisfaction problems. This allows to develop a theoretical understanding of a class of algorithms for solving constraint satisfaction problems, in which elementary degrees of freedom are sequentially assigned according to the results of a message passing procedure (belief-propagation). We confront this theoretical analysis to the results of extensive numerical simulations.Comment: 32 pages, 24 figure

    An Optimal Decision Procedure for MPNL over the Integers

    Get PDF
    Interval temporal logics provide a natural framework for qualitative and quantitative temporal reason- ing over interval structures, where the truth of formulae is defined over intervals rather than points. In this paper, we study the complexity of the satisfiability problem for Metric Propositional Neigh- borhood Logic (MPNL). MPNL features two modalities to access intervals "to the left" and "to the right" of the current one, respectively, plus an infinite set of length constraints. MPNL, interpreted over the naturals, has been recently shown to be decidable by a doubly exponential procedure. We improve such a result by proving that MPNL is actually EXPSPACE-complete (even when length constraints are encoded in binary), when interpreted over finite structures, the naturals, and the in- tegers, by developing an EXPSPACE decision procedure for MPNL over the integers, which can be easily tailored to finite linear orders and the naturals (EXPSPACE-hardness was already known).Comment: In Proceedings GandALF 2011, arXiv:1106.081

    Soft Concurrent Constraint Programming

    Full text link
    Soft constraints extend classical constraints to represent multiple consistency levels, and thus provide a way to express preferences, fuzziness, and uncertainty. While there are many soft constraint solving formalisms, even distributed ones, by now there seems to be no concurrent programming framework where soft constraints can be handled. In this paper we show how the classical concurrent constraint (cc) programming framework can work with soft constraints, and we also propose an extension of cc languages which can use soft constraints to prune and direct the search for a solution. We believe that this new programming paradigm, called soft cc (scc), can be also very useful in many web-related scenarios. In fact, the language level allows web agents to express their interaction and negotiation protocols, and also to post their requests in terms of preferences, and the underlying soft constraint solver can find an agreement among the agents even if their requests are incompatible.Comment: 25 pages, 4 figures, submitted to the ACM Transactions on Computational Logic (TOCL), zipped file
    corecore