368 research outputs found
A GMRT 150 MHz search for variables and transients in Stripe 82
We have carried out a dedicated transient survey of 300 deg2 of the SDSS Stripe 82 region using the Giant Metrewave Radio Telescope (GMRT) at 150 MHz. Our multi-epoch observations, together with the TGSS survey, allow us to probe variability and transient activity on four different time-scales, beginning with 4 h and up to 4 yr. Data calibration, RFI flagging, source finding, and transient search were carried out in a semi-automated pipeline incorporating the SPAM recipe. This has enabled us to produce superior-quality images and carry out reliable transient search over the entire survey region in under 48 h post-observation. Among the few thousand unique point sources found in our 5σ single-epoch catalogues (flux density thresholds of about 24, 20, 16, and 18 mJy on the respective time-scales), we find <0.08 per cent, 0.01 per cent, <0.06 per cent, and 0.05 per cent to be variable (beyond a significance of 4σ and fractional variability of 30 per cent) on time-scales of 4 h, 1 d, 1 month, and 4 yr, respectively. This is substantially lower than that in the GHz sky, where ∼1 per cent of the persistent point sources are found to be variable. Although our survey was designed to probe a superior part of the transient phase space, our transient search did not yield any significant candidates. The transient (preferentially extragalactic) rate at 150 MHz is therefore <0.005 on time-scales of 1 month and 4 yr, and <0.002 on time-scales of 1 d and 4 h, beyond 7σ detection threshold. We put these results in perspective with the previous studies and give recommendations for future low-frequency transient surveys
On associating Fast Radio Bursts with afterglows
A radio source that faded over six days, with a redshift of
host, has been identified by Keane et al. (2016) as the transient afterglow to
a fast radio burst (FRB 150418). We report follow-up radio and optical
observations of the afterglow candidate and find a source that is consistent
with an active galactic nucleus. If the afterglow candidate is nonetheless a
prototypical FRB afterglow, existing slow-transient surveys limit the fraction
of FRBs that produce afterglows to 0.25 for afterglows with fractional
variation, , and 0.07 for , at 95%
confidence. In anticipation of a barrage of bursts expected from future FRB
surveys, we provide a simple framework for statistical association of FRBs with
afterglows. Our framework properly accounts for statistical uncertainties, and
ensures consistency with limits set by slow-transient surveys.Comment: Accepted version (ApJL
A Case Study of On-the-Fly Wide-Field Radio Imaging Applied to the Gravitational-wave Event GW 151226
We apply a newly-developed On-the-Fly mosaicing technique on the NSF's Karl
G. Jansky Very Large Array (VLA) at 3 GHz in order to carry out a sensitive
search for an afterglow from the Advanced LIGO binary black hole merger event
GW 151226. In three epochs between 1.5 and 6 months post-merger we observed a
100 sq. deg region, with more than 80% of the survey region having a RMS
sensitivity of better than 150 uJy/beam, in the northern hemisphere having a
merger containment probability of 10%. The data were processed in
near-real-time, and analyzed to search for transients and variables. No
transients were found but we have demonstrated the ability to conduct blind
searches in a time-frequency phase space where the predicted afterglow signals
are strongest. If the gravitational wave event is contained within our survey
region, the upper limit on any late-time radio afterglow from the merger event
at an assumed mean distance of 440 Mpc is about 1e29 erg/s/Hz. Approximately
1.5% of the radio sources in the field showed variability at a level of 30%,
and can be attributed to normal activity from active galactic nuclei. The low
rate of false positives in the radio sky suggests that wide-field imaging
searches at a few Gigahertz can be an efficient and competitive search
strategy. We discuss our search method in the context of the recent afterglow
detection from GW 170817 and radio follow-up in future gravitational wave
observing runs.Comment: 11 pages. 6 figures. 1 table. Accepted for publication in ApJ Letter
Sensitive Search for Radio Variables and Transients in the Extended Chandra Deep Field South
We report on an analysis of the Extended Chandra Deep Field South (E-CDFS) region using archival data from the Very Large Array, with the goal of studying radio variability and transients at the sub-milliJansky level. The 49 epochs of E-CDFS observations at 1.4 GHz sample timescales from 1 day to 3 months. We find that only a fraction (1%) of unresolved radio sources above 40 μJy are variable at the 4σ level. There is no evidence that the fractional variability changes along with the known transition of radio-source populations below 1 mJy. Optical identifications of the sources show that the variable radio emission is associated with the central regions of an active galactic nucleus or a star-forming galaxy. After a detailed comparison of the efficacy of various source-finding algorithms, we use the best to carry out a transient search. No transients were found. This implies that the areal density of transients with peak flux density greater than 0.21 mJy is less than 0.37 deg^(–2) (at a confidence level of 95%). This result is approximately an order of magnitude below the transient rate measured at 5 GHz by Bower et al. but it is consistent with more recent upper limits from Frail et al. Our findings suggest that the radio sky at 1.4 GHz is relatively quiet. For multi-wavelength transient searches, such as the electromagnetic counterparts to gravitational waves, this frequency may be optimal for reducing the high background of false positives
Superluminal motion of a relativistic jet in the neutron star merger GW170817
The binary neutron star merger GW170817 was accompanied by radiation across
the electromagnetic spectrum and localized to the galaxy NGC 4993 at a distance
of 41+/-3 Mpc. The radio and X-ray afterglows of GW170817 exhibited delayed
onset, a gradual rise in the emission with time as t^0.8, a peak at about 150
days post-merger, followed by a relatively rapid decline. To date, various
models have been proposed to explain the afterglow emission, including a
choked-jet cocoon and a successful-jet cocoon (a.k.a. structured jet). However,
the observational data have remained inconclusive as to whether GW170817
launched a successful relativistic jet. Here we show, through Very Long
Baseline Interferometry, that the compact radio source associated with GW170817
exhibits superluminal motion between two epochs at 75 and 230 days post-merger.
This measurement breaks the degeneracy between the models and indicates that,
while the early-time radio emission was powered by a wider-angle outflow
(cocoon), the late-time emission was most likely dominated by an energetic and
narrowly-collimated jet, with an opening angle of <5 degrees, and observed from
a viewing angle of about 20 degrees. The imaging of a collimated relativistic
outflow emerging from GW170817 adds substantial weight to the growing evidence
linking binary neutron star mergers and short gamma-ray bursts.Comment: 42 pages, 4 figures (main text), 2 figures (supplementary text), 2
tables. Referee and editor comments incorporate
Gravity and Light: Combining Gravitational Wave and Electromagnetic Observations in the 2020s
As of today, we have directly detected exactly one source in both gravitational waves (GWs) and electromagnetic (EM) radiation, the binary neutron star merger GW170817, its associated gamma-ray burst GRB170817A, and the subsequent kilonova SSS17a/AT 2017gfo. Within ten years, we will detect hundreds of events, including new classes of events such as neutron-star-black-hole mergers, core-collapse supernovae, and almost certainly something completely unexpected. As we build this sample, we will explore exotic astrophysical topics ranging from nucleosynthesis, stellar evolution, general relativity, high-energy astrophysics, nuclear matter, to cosmology. The discovery potential is extraordinary, and investments in this area will yield major scientific breakthroughs. Here we outline some of the most exciting scientific questions that can be answered by combining GW and EM observations
SPIRITS 16tn in NGC 3556: A heavily obscured and low-luminosity supernova at 8.8 Mpc
We present the discovery by the SPitzer InfraRed Intensive Transients Survey
(SPIRITS) of a likely supernova (SN) in NGC 3556 at only 8.8 Mpc, which,
despite its proximity, was not detected by optical searches. A luminous
infrared (IR) transient at mag (Vega), SPIRITS 16tn is
coincident with a dust lane in the inclined, star-forming disk of the host.
Using IR, optical, and radio observations, we attempt to determine the nature
of this event. We estimate 8 - 9 mag of extinction, placing it
among the three most highly obscured IR-discovered SNe to date. The [4.5] light
curve declined at a rate of 0.013 mag day, and the color
grew redder from 0.7 to 1.0 mag by 184.7 days post discovery.
Optical/IR spectroscopy shows a red continuum, but no clearly discernible
features, preventing a definitive spectroscopic classification. Deep radio
observations constrain the radio luminosity of SPIRITS 16tn to erg s Hz between 3 - 15 GHz, excluding many
varieties of radio core-collapse SNe. A type Ia SN is ruled out by the observed
red IR color, and lack of features normally attributed to Fe-peak elements in
the optical and IR spectra. SPIRITS 16tn was fainter at [4.5] than typical
stripped-envelope SNe by 1 mag. Comparison of the spectral energy
distribution to SNe II suggests SPIRITS 16tn was both highly obscured, and
intrinsically dim, possibly akin to the low-luminosity SN 2005cs. We infer the
presence of an IR dust echo powered by a peak luminosity of the transient of erg s erg s,
consistent with the observed range for SNe II. This discovery illustrates the
power of IR surveys to overcome the compounding effects of visible extinction
and optically sub-luminous events in completing the inventory of nearby SNe.Comment: 25 pages, 10 figures, submitted to Ap
A multi-wavelength investigation of the radio-loud supernova PTF11qcj and its circumstellar environment
We present the discovery, classification, and extensive panchromatic (from
radio to X-ray) follow-up observations of PTF11qcj, a supernova discovered by
the Palomar Transient Factory. PTF11qcj is located at a distance of dL ~ 124
Mpc. Our observations with the Karl G. Jansky Very Large Array show that this
event is radio-loud: PTF11qcj reached a radio peak luminosity comparable to
that of the famous gamma-ray-burst-associated supernova 1998bw (L_{5GHz} ~
10^{29} erg/s/Hz). PTF11qcj is also detected in X-rays with the Chandra
observatory, and in the infrared band with Spitzer. Our multi-wavelength
analysis probes the supernova interaction with circumstellar material. The
radio observations suggest a progenitor mass-loss rate of ~10^{-4} Msun/yr x
(v_w/1000 km/s), and a velocity of ~(0.3-0.5)c for the fastest moving ejecta
(at ~10d after explosion). However, these estimates are derived assuming the
simplest model of supernova ejecta interacting with a smooth circumstellar
material characterized by radial power-law density profile, and do not account
for possible inhomogeneities in the medium and asphericity of the explosion.
The radio light curve shows deviations from such a simple model, as well as a
re-brightening at late times. The X-ray flux from PTF11qcj is compatible with
the high-frequency extrapolation of the radio synchrotron emission (within the
large uncertainties). An IR light echo from pre-existing dust is in agreement
with our infrared data. Our analysis of pre-explosion data from the Palomar
Transient Factory suggests that a precursor eruption of absolute magnitude M_r
~ -13 mag may have occurred ~ 2.5 yr prior to the supernova explosion. Based on
our panchromatic follow-up campaign, we conclude that PTF11qcj fits the
expectations from the explosion of a Wolf-Rayet star. Precursor eruptions may
be a feature characterizing the final pre-explosion evolution of such stars.Comment: 43 pages, 15 figures; this version matches the one published in ApJ
(includes minor changes that address the Referee's comments.
Recommended from our members
An ASKAP Search for a Radio Counterpart to the First High-significance Neutron Star-Black Hole Merger LIGO/Virgo S190814bv
We present results from a search for a radio transient associated with the LIGO/Virgo source S190814bv, a likely neutron star-black hole (NSBH) merger, with the Australian Square Kilometre Array Pathfinder. We imaged a 30 deg2 field at ΔT = 2, 9, and 33 days post-merger at a frequency of 944 MHz, comparing them to reference images from the Rapid ASKAP Continuum Survey observed 110 days prior to the event. Each epoch of our observations covers 89% of the LIGO/Virgo localization region. We conducted an untargeted search for radio transients in this field, resulting in 21 candidates. For one of these, AT2019osy, we performed multiwavelength follow-up and ultimately ruled out the association with S190814bv. All other candidates are likely unrelated variables, but we cannot conclusively rule them out. We discuss our results in the context of model predictions for radio emission from NSBH mergers and place constrains on the circum-merger density and inclination angle of the merger. This survey is simultaneously the first large-scale radio follow-up of an NSBH merger, and the most sensitive widefield radio transients search to-date
- …
