1,894 research outputs found
Characterization of exoplanets from their formation III: The statistics of planetary luminosities
This paper continues a series in which we predict the main observable
characteristics of exoplanets based on their formation. In Paper I we described
our global planet formation and evolution model. In Paper II we studied the
planetary mass-radius relationship. Here we present an extensive study of the
statistics of planetary luminosities during both formation and evolution. Our
results can be compared with individual directly imaged (proto)planets as well
as statistical results from surveys. We calculated three synthetic planet
populations assuming different efficiencies of the accretional heating by gas
and planetesimals. We describe the temporal evolution of the planetary
mass-luminosity relation. We study the shock and internal luminosity during
formation. We predict a statistical version of the post-formation mass versus
entropy "tuning fork" diagram. We find high nominal post-formation luminosities
for hot and cold gas accretion. Individual formation histories can still lead
to a factor of a few spread in the post-formation luminosity at a given mass.
However, if the gas and planetesimal accretional heating is unknown, the
post-formation luminosity may exhibit a spread of as much as 2-3 orders of
magnitude at a fixed mass covering cold, warm, and hot states. As a key result
we predict a flat log-luminosity distribution for giant planets, and a steep
increase towards lower luminosities due to the higher occurrence rate of
low-mass planets. Future surveys may detect this upturn. During formation an
estimate of the planet mass may be possible for cold gas accretion if the gas
accretion rate can be estimated. Due to the "core-mass effect" planets that
underwent cold gas accretion can still have high post-formation entropies. Once
the number of directly imaged exoplanets with known ages and luminosities
increases, the observed distributions may be compared with our predictions.Comment: 44 pages, 26 figures (journal format). A&A in print. Language
correction only relative to V
Theoretical models of planetary system formation: mass vs semi-major axis
Planet formation models have been developed during the last years in order to
try to reproduce the observations of both the solar system, and the extrasolar
planets. Some of these models have partially succeeded, focussing however on
massive planets, and for the sake of simplicity excluding planets belonging to
planetary systems. However, more and more planets are now found in planetary
systems. This tendency, which is a result of both radial velocity, transit and
direct imaging surveys, seems to be even more pronounced for low mass planets.
These new observations require the improvement of planet formation models,
including new physics, and considering the formation of systems. In a recent
series of papers, we have presented some improvements in the physics of our
models, focussing in particular on the internal structure of forming planets,
and on the computation of the excitation state of planetesimals, and their
resulting accretion rate. In this paper, we focus on the concurrent effect of
the formation of more than one planet in the same protoplanetary disc, and show
the effect, in terms of global architecture and composition of this
multiplicity. We use a N-body calculation including collision detection to
compute the orbital evolution of a planetary system. Moreover, we describe the
effect of competition for accretion of gas and solids, as well as the effect of
gravitational interactions between planets. We show that the masses and
semi-major axis of planets are modified by both the effect of competition and
gravitational interactions. We also present the effect of the assumed number of
forming planets in the same system (a free parameter of the model), as well as
the effect of the inclination and eccentricity damping.Comment: accepted in Astronomy and Astrophysic
Planet Population Synthesis
With the increasing number of exoplanets discovered, statistical properties
of the population as a whole become unique constraints on planet formation
models provided a link between the description of the detailed processes
playing a role in this formation and the observed population can be
established. Planet population synthesis provides such a link. The approach
allows to study how different physical models of individual processes (e.g.,
proto-planetary disc structure and evolution, planetesimal formation, gas
accretion, migration, etc.) affect the overall properties of the population of
emerging planets. By necessity, planet population synthesis relies on
simplified descriptions of complex processes. These descriptions can be
obtained from more detailed specialised simulations of these processes. The
objective of this chapter is twofold: 1) provide an overview of the physics
entering in the two main approaches to planet population synthesis and 2)
present some of the results achieved as well as illustrate how it can be used
to extract constraints on the models and to help interpret observations.Comment: 23 pages, 8 figures, accepted for publication as a chapter in
Protostars and Planets VI, University of Arizona Press (2014), eds. H.
Beuther, R. Klessen, C. Dullemond, Th. Henning. Updated references relative
to v
The Exoplanet Population Observation Simulator. II -- Population Synthesis in the Era of Kepler
The collection of planetary system properties derived from large surveys such
as Kepler provides critical constraints on planet formation and evolution.
These constraints can only be applied to planet formation models, however, if
the observational biases and selection effects are properly accounted for. Here
we show how epos, the Exoplanet Population Observation Simulator, can be used
to constrain planet formation models by comparing the Bern planet population
synthesis models to the Kepler exoplanetary systems. We compile a series of
diagnostics, based on occurrence rates of different classes of planets and the
architectures of multi-planet systems, that can be used as benchmarks for
future and current modeling efforts. Overall, we find that a model with 100
seed planetary cores per protoplanetary disk provides a reasonable match to
most diagnostics. Based on these diagnostics we identify physical properties
and processes that would result in the Bern model more closely matching the
known planetary systems. These are: moving the planet trap at the inner disk
edge outward; increasing the formation efficiency of mini-Neptunes; and
reducing the fraction of stars that form observable planets. We conclude with
an outlook on the composition of planets in the habitable zone, and highlight
that the majority of simulated planets smaller than 1.7 Earth radii have
substantial hydrogen atmospheres.
The software used in this paper is available online for public scrutiny at
https://github.com/GijsMulders/eposComment: Accepted in Ap
The HARPS search for southern extra-solar planets. XXVII. Up to seven planets orbiting HD 10180: probing the architecture of low-mass planetary systems
Context. Low-mass extrasolar planets are presently being discovered at an
increased pace by radial velocity and transit surveys, opening a new window on
planetary systems. Aims. We are conducting a high-precision radial velocity
survey with the HARPS spectrograph which aims at characterizing the population
of ice giants and super-Earths around nearby solar-type stars. This will lead
to a better understanding of their formation and evolution, and yield a global
picture of planetary systems from gas giants down to telluric planets. Methods.
Progress has been possible in this field thanks in particular to the sub-m/s
radial velocity precision achieved by HARPS. We present here new high-quality
measurements from this instrument. Results. We report the discovery of a
planetary system comprising at least five Neptune-like planets with minimum
masses ranging from 12 to 25 M_Earth, orbiting the solar-type star HD 10180 at
separations between 0.06 and 1.4 AU. A sixth radial velocity signal is present
at a longer period, probably due to a 65-M_Earth object. Moreover, another body
with a minimum mass as low as 1.4 M_Earth may be present at 0.02 AU from the
star. This is the most populated exoplanetary system known to date. The planets
are in a dense but still well-separated configuration, with significant secular
interactions. Some of the orbital period ratios are fairly close to integer or
half-integer values, but the system does not exhibit any mean-motion
resonances. General relativity effects and tidal dissipation play an important
role to stabilize the innermost planet and the system as a whole. Numerical
integrations show long-term dynamical stability provided true masses are within
a factor ~3 from minimum masses. We further note that several low-mass
planetary systems exhibit a rather "packed" orbital architecture with little or
no space left for additional planets. (Abridged)Comment: 20 pages, 15 figures, accepted for publication in A&
The HARPS search for southern extra-solar planets. XX. Planets around the active star BD-08:2823
We report the detection of a planetary system around BD-08:2823, that
includes at least one Uranus-mass planet and one Saturn-mass planet. This
discovery serendipitously originates from a search for planetary transits in
the Hipparcos photometry database. This program preferentially selected active
stars and did not allow the detection of new transiting planets. It allowed
however the identification of the K3V star BD-08:2823 as a target harboring a
multiplanet system, that we secured and characterized thanks to an intensive
monitoring with the HARPS spectrograph at the 3.6-m ESO telescope in La Silla.
The stellar activity level of BD-08:2823 complicates the analysis but does not
prohibit the detection of two planets around this star. BD-08:2823b has a
minimum mass of 14.4+/-2.1 M_Earth and an orbital period of 5.60 days, whereas
BD-08:2823c has a minimum mass of 0.33+/-0.03 M_Jup and an orbital period of
237.6 days. This new system strengthens the fact that low-mass planets are
preferentially found in multiplanetary systems, but not around high-metallicity
stars as this is the case for massive planets. It also supports the belief that
active stars should not be neglected in exoplanet searches, even when searching
for low-mass planets.Comment: 10 pages, 8 figures, 3 tables, accepted for publication in A&
The HARPS search for southern extrasolar planets. XXIII. 8 planetary companions to low-activity solar-type stars
In this paper, we present our HARPS radial-velocity data for eight
low-activity solar-type stars belonging to the HARPS volume-limited sample:
HD6718, HD8535, HD28254, HD290327, HD43197, HD44219, HD148156, and HD156411.
Keplerian fits to these data reveal the presence of low-mass companions around
these targets. With minimum masses ranging from 0.58 to 2.54 MJup, these
companions are in the planetary mass domain. The orbital periods of these
planets range from slightly less than one to almost seven years. The eight
orbits presented in this paper exhibit a wide variety of eccentricities: from
0.08 to above 0.8.Comment: 8 pages, 2 figures, accepted for publication in A&
The near-infrared spectral energy distribution of {\beta} Pictoris b
A gas giant planet has previously been directly seen orbiting at 8-10 AU
within the debris disk of the ~12 Myr old star {\beta} Pictoris. The {\beta}
Pictoris system offers the rare opportunity to study the physical and
atmospheric properties of an exoplanet placed on a wide orbit and to establish
its formation scenario. We obtained J (1.265 {\mu}m), H (1.66 {\mu}m), and M'
(4.78 {\mu}m) band angular differential imaging of the system between 2011 and
2012. We detect the planetary companion in our four-epoch observations. We
estimate J = 14.0 +- 0.3, H = 13.5 +- 0.2, and M' = 11.0 +- 0.3 mag. Our new
astrometry consolidates previous semi-major axis (sma=8-10 AU) and excentricity
(e <= 0.15) estimates of the planet. These constraints, and those derived from
radial velocities of the star provides independent upper limits on the mass of
{\beta} Pictoris b of 12 and 15.5 MJup for semi-major axis of 9 and 10 AU. The
location of {\beta} Pictoris b in color-magnitude diagrams suggests it has
spectroscopic properties similar to L0-L4 dwarfs. This enables to derive
Log10(L/Lsun) = -3.87 +- 0.08 for the companion. The analysis with 7
PHOENIX-based atmospheric models reveals the planet has a dusty atmosphere with
Teff = 1700 +- 100 K and log g = 4.0+- 0.5. "Hot-start" evolutionary models
give a new mass of 10+3-2 MJup from Teff and 9+3-2 MJup from luminosity.
Predictions of "cold-start" models are inconsistent with independent
constraints on the planet mass. "Warm-start" models constrain the mass to M >=
6MJup and the initial entropies to values (Sinit >= 9.3Kb/baryon), intermediate
between those considered for cold/hot-start models, but likely closer to those
of hot-start models.Comment: 19 pages, accepted in Astronomy and Astrophysic
The HARPS search for southern extra-solar planets. XXIV. Companions to HD 85390, HD 90156 and HD 103197: A Neptune analogue and two intermediate mass planets
We report the detection of three new extrasolar planets orbiting the solar
type stars HD 85390, HD 90156 and HD 103197 with the HARPS spectrograph mounted
on the ESO 3.6-m telescope at La Silla observatory. HD 85390 has a planetary
companion with a projected intermediate mass (42.0 Earth masses) on a 788-day
orbit (a=1.52 AU) with an eccentricity of 0.41, for which there is no analogue
in the solar system. A drift in the data indicates the presence of another
companion on a long period orbit, which is however not covered by our
measurements. HD 90156 is orbited by a warm Neptune analogue with a minimum
mass of 17.98 Earth masses (1.05 Neptune masses), a period of 49.8 days (a=0.25
AU) and an eccentricity of 0.31. HD 103197 has an intermediate mass planet on a
circular orbit (P=47.8 d, Msini=31.2 Earth masses). We discuss the formation of
planets of intermediate mass (about 30-100 Earth masses) which should be rare
inside a few AU according to core accretion formation models.Comment: 9 pages, 5 figures. Accepted to A&
- …
