563 research outputs found
Improving understanding of the functional diversity of fisheries by exploring the influence of global catch reconstruction
Functional diversity is thought to enhance ecosystem resilience, driving research focused on trends in the functional composition of fisheries, most recently with new reconstructions of global catch data. However, there is currently little understanding of how accounting for unreported catches (e.g. small-scale and illegal fisheries, bycatch and discards) influences functional diversity trends in global fisheries. We explored how diversity estimates varied among reported and unreported components of catch in 2010, and found these components had distinct functional fingerprints. Incorporating unreported catches had little impact on global-scale functional diversity patterns. However, at smaller, management-relevant scales, the effects of incorporating unreported catches were large (changes in functional diversity of up to 46%). Our results suggest there is greater uncertainty about the risks to ecosystem integrity and resilience from current fishing patterns than previously recognized. We provide recommendations and suggest a research agenda to improve future assessments of functional diversity of global fisheries
Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs
When tropical systems lose species, they are often assumed to be buffered against declines in functional diversity by the ability of the species-rich biota to display high functional redundancy: i.e., a high number of species performing similar functions. We tested this hypothesis using a ninefold richness gradient in global fish faunas on tropical reefs encompassing 6,316 species distributed among 646 functional entities (FEs): i.e., unique combinations of functional traits. We found that the highest functional redundancy is located in the Central Indo-Pacific with a mean of 7.9 species per FE. However, this overall level of redundancy is disproportionately packed into few FEs, a pattern termed functional over-redundancy (FOR). For instance, the most speciose FE in the Central Indo-Pacific contains 222 species (out of 3,689) whereas 38% of FEs (180 out of 468) have no functional insurance with only one species. Surprisingly, the level of FOR is consistent across the six fish faunas, meaning that, whatever the richness, over a third of the species may still be in overrepresented FEs whereas more than one third of the FEs are left without insurance, these levels all being significantly higher than expected by chance. Thus, our study shows that, even in high-diversity systems, such as tropical reefs, functional diversity remains highly vulnerable to species loss. Although further investigations are needed to specifically address the influence of redundant vs. vulnerable FEs on ecosystem functioning, our results suggest that the promised benefits from tropical biodiversity may not be as strong as previously thought
Plate tectonics drive tropical reef biodiversity dynamics
The Cretaceous breakup of Gondwana strongly modified the global distribution of shallow tropical seas reshaping the geographic configuration of marine basins. However, the links between tropical reef availability, plate tectonic processes and marine biodiversity distribution patterns are still unknown. Here, we show that a spatial diversification model constrained by absolute plate motions for the past 140 million years predicts the emergence and movement of diversity hotspots on tropical reefs. The spatial dynamics of tropical reefs explains marine fauna diversification in the Tethyan Ocean during the Cretaceous and early Cenozoic, and identifies an eastward movement of ancestral marine lineages towards the Indo-Australian Archipelago in the Miocene. A mechanistic model based only on habitat-driven diversification and dispersal yields realistic predictions of current biodiversity patterns for both corals and fishes. As in terrestrial systems, we demonstrate that plate tectonics played a major role in driving tropical marine shallow reef biodiversity dynamics
Author correction : a global database for metacommunity ecology, integrating species, traits, environment and space
Correction to: Scientific Data https://doi.org/10.1038/s41597-019-0344-7, published online 08 January 202
Functional redundancy and sensitivity of fish assemblages in European rivers, lakes and estuarine ecosystems
The impact of species loss on ecosystems functioning depends on the amount of trait similarity
between species, i.e. functional redundancy, but it is also influenced by the order in which species are
lost. Here we investigated redundancy and sensitivity patterns across fish assemblages in lakes, rivers
and estuaries. Several scenarios of species extinction were simulated to determine whether the loss of
vulnerable species (with high propensity of extinction when facing threats) causes a greater functional
alteration than random extinction. Our results indicate that the functional redundancy tended to
increase with species richness in lakes and rivers, but not in estuaries. We demonstrated that i) in the
three systems, some combinations of functional traits are supported by non-redundant species, ii) rare
species in rivers and estuaries support singular functions not shared by dominant species, iii) the loss of
vulnerable species can induce greater functional alteration in rivers than in lakes and estuaries. Overall,
the functional structure of fish assemblages in rivers is weakly buffered against species extinction
because vulnerable species support singular functions. More specifically, a hotspot of functional
sensitivity was highlighted in the Iberian Peninsula, which emphasizes the usefulness of quantitative
criteria to determine conservation prioritiesinfo:eu-repo/semantics/publishedVersio
Bats in the Ghats: Agricultural intensification reduces functional diversity and increases trait filtering in a biodiversity hotspot in India
The responses of bats to land-use change have been extensively studied in temperate zones and the neotropics, but little is known from the palaeotropics. Effective conservation in heavily-populated palaeotropical hotspots requires a better understanding of which bats can and cannot survive in human-modified landscapes. We used catching and acoustic transects to examine bat assemblages in the Western Ghats of India, and identify the species most sensitive to agricultural change. We quantified functional diversity and trait filtering of assemblages in forest fragments, tea and coffee plantations, and along rivers in tea plantations with and without forested corridors, compared to protected forests. Functional diversity in forest fragments and shade-grown coffee was similar to that in protected forests, but was far lower in tea plantations. Trait filtering was also strongest in tea plantations. Forested river corridors in tea plantations mitigated much of the loss of functional diversity and the trait filtering seen on rivers in tea plantations without forested corridors. The bats most vulnerable to intensive agriculture were frugivorous, large, had short broad wings, or made constant frequency echolocation calls. The last three features are characteristic of forest animal-eating species that typically take large prey, often by gleaning. Ongoing conservation work to restore forest fragments and retain native trees in coffee plantations should be highly beneficial for bats in this landscape. The maintenance of a mosaic landscape with sufficient patches of forest, shade-grown coffee and riparian corridors will help to maintain landscape wide functional diversity in an area dominated by tea plantations
Author correction : a global database for metacommunity ecology, integrating species, traits, environment and space
Correction to: Scientific Data https://doi.org/10.1038/s41597-019-0344-7, published online 08 January 202
Low fuel cost and rising fish price threaten coral reef wilderness
Wilderness areas offer unparalleled ecosystem conditions. However, growing human populations and consumption are among factors that drive encroachment on these areas. Here, we explore the threat of small‐scale fisheries to wilderness reefs by developing a framework and modeling fluctuations in fishery range with fuel costs and fish prices. We modeled biomass of four fishery groups across the New Caledonian archipelago, and used fish and fuel prices from 2005 to 2020 to estimate the extent of exploited reefs across three fishing scenarios. From 2012 to 2018, maximum profitable range increased from 15 to over 30 hr from the capital city, expanding to reefs previously uneconomic to fish, including a UNESCO heritage site. By 2020, over half of New Caledonian (∼17% global) wilderness reefs will become profitable to fish. Our results demonstrate that remoteness from humans should not be considered protection for wilderness coral reefs in the context of rising fish prices
Bright spots among the world's coral reefs
Ongoing declines in the structure and function of the world’s coral reefs1, 2 require novel approaches to sustain these ecosystems and the millions of people who depend on them3. A presently unexplored approach that draws on theory and practice in human health and rural development4, 5 is to systematically identify and learn from the ‘outliers’—places where ecosystems are substantially better (‘bright spots’) or worse (‘dark spots’) than expected, given the environmental conditions and socioeconomic drivers they are exposed to. Here we compile data from more than 2,500 reefs worldwide and develop a Bayesian hierarchical model to generate expectations of how standing stocks of reef fish biomass are related to 18 socioeconomic drivers and environmental conditions. We identify 15 bright spots and 35 dark spots among our global survey of coral reefs, defined as sites that have biomass levels more than two standard deviations from expectations. Importantly, bright spots are not simply comprised of remote areas with low fishing pressure; they include localities where human populations and use of ecosystem resources is high, potentially providing insights into how communities have successfully confronted strong drivers of change. Conversely, dark spots are not necessarily the sites with the lowest absolute biomass and even include some remote, uninhabited locations often considered near pristine6. We surveyed local experts about social, institutional, and environmental conditions at these sites to reveal that bright spots are characterized by strong sociocultural institutions such as customary taboos and marine tenure, high levels of local engagement in management, high dependence on marine resources, and beneficial environmental conditions such as deep-water refuges. Alternatively, dark spots are characterized by intensive capture and storage technology and a recent history of environmental shocks. Our results suggest that investments in strengthening fisheries governance, particularly aspects such as participation and property rights, could facilitate innovative conservation actions that help communities defy expectations of global reef degradation
Gravity of human impacts mediates coral reef conservation gains
Coral reefs provide ecosystem goods and services for millions of people in the tropics, but reef conditions are declining worldwide. Effective solutions to the crisis facing coral reefs depend in part on understanding the context under which different types of conservation benefits can be maximized. Our global analysis of nearly 1,800 tropical reefs reveals how the intensity of human impacts in the surrounding seascape, measured as a function of human population size and accessibility to reefs (“gravity”), diminishes the effectiveness of marine reserves at sustaining reef fish biomass and the presence of top predators, even where compliance with reserve rules is high. Critically, fish biomass in high-compliance marine reserves located where human impacts were intensive tended to be less than a quarter that of reserves where human impacts were low. Similarly, the probability of encountering top predators on reefs with high human impacts was close to zero, even in high-compliance marine reserves. However, we find that the relative difference between openly fished sites and reserves (what we refer to as conservation gains) are highest for fish biomass (excluding predators) where human impacts are moderate and for top predators where human impacts are low. Our results illustrate critical ecological trade-offs in meeting key conservation objectives: reserves placed where there are moderate-to-high human impacts can provide substantial conservation gains for fish biomass, yet they are unlikely to support key ecosystem functions like higher-order predation, which is more prevalent in reserve locations with low human impacts
- …
