1,728 research outputs found
Allelic variations of the multidrug resistance gene determine susceptibility and disease behavior in ulcerative colitis
BACKGROUND AND AIMS: The MDR1 gene encodes P-glycoprotein 170, an efflux transporter that is highly expressed in intestinal epithelial cells. The MDR1 exonic single nucleotide polymorphisms (SNPs) C3435T and G2677T have been shown to correlate with activity/expression of P-glycoprotein 170.METHODS: This was a case-control analysis of MDR1 C3435T and G2677T SNPs in a large well-characterized Scottish white cohort (335 with ulcerative colitis [UC], 268 with Crohn's disease [CD], and 370 healthy controls). We conducted 2-locus haplotype and detailed univariate and multivariate genotypic-phenotypic analyses.RESULTS: The MDR1 3435 TT genotype (34.6% vs 26.5%; P = .04; odds ratio [OR], 1.60; 95% confidence interval [95% CI], 1.04-2.44) and T-allelic frequencies (58.2% vs 52.8%; P = .02; OR, 1.28; 95% CI, 1.03-1.58) were significantly higher in patients with UC compared with controls. No association was seen with CD. The association was strongest with extensive UC (TT genotype: 42.4% vs 26.5%; P = .003; OR, 2.64; 95% CI, 1.34-4.99; and T allele: 63.9% vs 52.8%; P = .009; OR, 1.70; 95% CI, 1.24-2.29), and this was also confirmed on multivariate analysis ( P = .007). The G2677T SNP was not associated with UC or CD. These 2 SNPs lie in linkage disequilibrium in our population (D', .8-.9; r 2 , .7-.8). Two-locus haplotypes showed both positive (3435T/G2677 haplotype: P = .03; OR, 1.44) and negative (C3435/2677T haplotype: P = .002; OR, .35) associations with UC. Homozygotes for the haplotype 3435T/G2677 were significantly increased in UC ( P = .017; OR, 8.88; 95% CI, 1.10-71.45).CONCLUSIONS: Allelic variations of the MDR1 gene determine disease extent as well as susceptibility to UC in the Scottish population. The present data strongly implicate the C3435T SNP, although the 2-locus haplotype data underline the need for further detailed haplotypic studies.</p
CCR2⁺CD103⁻ intestinal dendritic cells develop from DC-committed precursors and induce interleukin-17 production by T cells
The identification of intestinal macrophages (m phi s) and dendritic cells (DCs) is a matter of intense debate. Although CD103(+) mononuclear phagocytes (MPs) appear to be genuine DCs, the nature and origins of CD103(-) MPs remain controversial. We show here that intestinal CD103(-)CD11b(+) MPs can be separated clearly into DCs and m phi s based on phenotype, gene profile, and kinetics. CD64(-)CD103(-)CD11b(+) MPs are classical DCs, being derived from Flt3 ligand-dependent, DC-committed precursors, not Ly6C hi monocytes. Surprisingly, a significant proportion of these CD103(-)CD11b(+) DCs express CCR2 and there is a selective decrease in CD103(-)CD11b(+) DCs in mice lacking this chemokine receptor. CCR2(+)CD103(-) DCs are present in both the murine and human intestine, drive interleukin (IL)-17a production by Tcells in vitro, and show constitutive expression of IL-12/IL-23p40. These data highlight the heterogeneity of intestinal DCs and reveal a bona fide population of CCR2(+) DCs that is involved in priming mucosal T helper type 17 (Th17) responses
An evaluation of metal removal during wastewater treatment: The potential to achieve more stringent final effluent standards
This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2011 Taylor & Francis.Metals are of particular importance in relation to water quality, and concern regarding the impact of these contaminants on biodiversity is being encapsulated within the latest water-related legislation such as the Water Framework Directive in Europe and criteria revisions to the Clean Water Act in the United States. This review undertakes an evaluation of the potential of 2-stage wastewater treatment consisting of primary sedimentation and biological treatment in the form of activated sludge processes, to meet more stringent discharge consents that are likely to be introduced as a consequence. The legislation, sources of metals, and mechanisms responsible for their removal are discussed, to elucidate possible pathways by which the performance of conventional processes may be optimized or enhanced. Improvements in effluent quality, achievable by reducing concentrations of suspended solids or biochemical oxygen demand, may also reduce metal concentrations although meeting possible requirements for the removal of copper my be challenging
The JCMT Gould Belt Survey: A First Look at the Auriga–California Molecular Cloud with SCUBA-2
We present 850 and 450 μm observations of the dense regions within the Auriga–California molecular cloud using SCUBA-2 as part of the JCMT Gould Belt Legacy Survey to identify candidate protostellar objects, measure the masses of their circumstellar material (disk and envelope), and compare the star formation to that in the Orion A molecular cloud. We identify 59 candidate protostars based on the presence of compact submillimeter emission, complementing these observations with existing Herschel/SPIRE maps. Of our candidate protostars, 24 are associated with young stellar objects (YSOs) in the Spitzer and Herschel/PACS catalogs of 166 and 60 YSOs, respectively (177 unique), confirming their protostellar nature. The remaining 35 candidate protostars are in regions, particularly around LkHα 101, where the background cloud emission is too bright to verify or rule out the presence of the compact 70 μm emission that is expected for a protostellar source. We keep these candidate protostars in our sample but note that they may indeed be prestellar in nature. Our observations are sensitive to the high end of the mass distribution in Auriga–Cal. We find that the disparity between the richness of infrared star-forming objects in Orion A and the sparsity in Auriga–Cal extends to the submillimeter, suggesting that the relative star formation rates have not varied over the Class II lifetime and that Auriga–Cal will maintain a lower star formation efficiency
A Gradualist Approach to Criminality: Early British Socialists, Utopia and Crime
The attitudes of early British socialists to criminality are a thoroughly under-researched area of historical scholarship. This paper draws on the utopian ideas of Robert Owen, William Morris, H. G. Wells, Robert Blatchford, Edward Carpenter and Ramsay MacDonald as a vehicle for investigating the attitudes of mainstream fin de siècle British socialists to crime, punishment and penal reform. Placing these figures and their utopias along a spectrum that sees radical ‘Arcadian’ socialists on the far left, ‘technological’ socialists on the far right, and moderate socialists occupying the middle ground, it presents two principal findings. First it demonstrates how crime was predicted by most of the left to decrease to a minimum level under socialism. ‘Arcadians’, ‘technological’ and moderate socialists invoked different methods in this pursuit, but each were in essence grappling with the same broader issue of the relationship of the individual to the state under socialism. Secondly, examining the multifaceted ideological heritage of the British left in relation to their approaches to crime, it is argued that, despite the left’s gradualist philosophy, their own attitudes to criminality actually closely reflected utopian conceptions. Examination of these issues offers an important opportunity to re-evaluate the evolution of British socialist thought
Transcriptional repressor ZEB2 promotes terminal differentiation of CD8⁺ effector and memory T cell populations during infection
ZEB2 is a multi-zinc-finger transcription factor known to play a significant role in early neurogenesis and in epithelial-mesenchymal transition-dependent tumor metastasis. Although the function of ZEB2 in T lymphocytes is unknown, activity of the closely related family member ZEB1 has been implicated in lymphocyte development. Here, we find that ZEB2 expression is up-regulated by activated T cells, specifically in the KLRG1(hi) effector CD8(+) T cell subset. Loss of ZEB2 expression results in a significant loss of antigen-specific CD8(+) T cells after primary and secondary infection with a severe impairment in the generation of the KLRG1(hi) effector memory cell population. We show that ZEB2, which can bind DNA at tandem, consensus E-box sites, regulates gene expression of several E-protein targets and may directly repress Il7r and Il2 in CD8(+) T cells responding to infection. Furthermore, we find that T-bet binds to highly conserved T-box sites in the Zeb2 gene and that T-bet and ZEB2 regulate similar gene expression programs in effector T cells, suggesting that T-bet acts upstream and through regulation of ZEB2. Collectively, we place ZEB2 in a larger transcriptional network that is responsible for the balance between terminal differentiation and formation of memory CD8(+) T cells
To respond or not to respond - a personal perspective of intestinal tolerance
For many years, the intestine was one of the poor relations of the immunology world, being a realm inhabited mostly by specialists and those interested in unusual phenomena. However, this has changed dramatically in recent years with the realization of how important the microbiota is in shaping immune function throughout the body, and almost every major immunology institution now includes the intestine as an area of interest. One of the most important aspects of the intestinal immune system is how it discriminates carefully between harmless and harmful antigens, in particular, its ability to generate active tolerance to materials such as commensal bacteria and food proteins. This phenomenon has been recognized for more than 100 years, and it is essential for preventing inflammatory disease in the intestine, but its basis remains enigmatic. Here, I discuss the progress that has been made in understanding oral tolerance during my 40 years in the field and highlight the topics that will be the focus of future research
Hsp90 governs dispersion and drug resistance of fungal biofilms
Fungal biofilms are a major cause of human mortality and are recalcitrant to most treatments due to intrinsic drug resistance. These complex communities of multiple cell types form on indwelling medical devices and their eradication often requires surgical removal of infected devices. Here we implicate the molecular chaperone Hsp90 as a key regulator of biofilm dispersion and drug resistance. We previously established that in the leading human fungal pathogen, Candida albicans, Hsp90 enables the emergence and maintenance of drug resistance in planktonic conditions by stabilizing the protein phosphatase calcineurin and MAPK Mkc1. Hsp90 also regulates temperature-dependent C. albicans morphogenesis through repression of cAMP-PKA signalling. Here we demonstrate that genetic depletion of Hsp90 reduced C. albicans biofilm growth and maturation in vitro and impaired dispersal of biofilm cells. Further, compromising Hsp90 function in vitro abrogated resistance of C. albicans biofilms to the most widely deployed class of antifungal drugs, the azoles. Depletion of Hsp90 led to reduction of calcineurin and Mkc1 in planktonic but not biofilm conditions, suggesting that Hsp90 regulates drug resistance through different mechanisms in these distinct cellular states. Reduction of Hsp90 levels led to a marked decrease in matrix glucan levels, providing a compelling mechanism through which Hsp90 might regulate biofilm azole resistance. Impairment of Hsp90 function genetically or pharmacologically transformed fluconazole from ineffectual to highly effective in eradicating biofilms in a rat venous catheter infection model. Finally, inhibition of Hsp90 reduced resistance of biofilms of the most lethal mould, Aspergillus fumigatus, to the newest class of antifungals to reach the clinic, the echinocandins. Thus, we establish a novel mechanism regulating biofilm drug resistance and dispersion and that targeting Hsp90 provides a much-needed strategy for improving clinical outcome in the treatment of biofilm infections
Environmental Factors in the Relapse and Recurrence of Inflammatory Bowel Disease:A Review of the Literature
The causes of relapse in patients with Crohn's disease (CD) and ulcerative colitis (UC) are largely unknown. This paper reviews the epidemiological and clinical data on how medications (non-steroidal anti-inflammatory drugs, estrogens and antibiotics), lifestyle factors (smoking, psychological stress, diet and air pollution) may precipitate clinical relapses and recurrence. Potential biological mechanisms include: increasing thrombotic tendency, imbalances in prostaglandin synthesis, alterations in the composition of gut microbiota, and mucosal damage causing increased permeability
Evaluation of SOVAT: An OLAP-GIS decision support system for community health assessment data analysis
Background. Data analysis in community health assessment (CHA) involves the collection, integration, and analysis of large numerical and spatial data sets in order to identify health priorities. Geographic Information Systems (GIS) enable for management and analysis using spatial data, but have limitations in performing analysis of numerical data because of its traditional database architecture. On-Line Analytical Processing (OLAP) is a multidimensional datawarehouse designed to facilitate querying of large numerical data. Coupling the spatial capabilities of GIS with the numerical analysis of OLAP, might enhance CHA data analysis. OLAP-GIS systems have been developed by university researchers and corporations, yet their potential for CHA data analysis is not well understood. To evaluate the potential of an OLAP-GIS decision support system for CHA problem solving, we compared OLAP-GIS to the standard information technology (IT) currently used by many public health professionals. Methods. SOVAT, an OLAP-GIS decision support system developed at the University of Pittsburgh, was compared against current IT for data analysis for CHA. For this study, current IT was considered the combined use of SPSS and GIS ("SPSS-GIS"). Graduate students, researchers, and faculty in the health sciences at the University of Pittsburgh were recruited. Each round consisted of: an instructional video of the system being evaluated, two practice tasks, five assessment tasks, and one post-study questionnaire. Objective and subjective measurement included: task completion time, success in answering the tasks, and system satisfaction. Results. Thirteen individuals participated. Inferential statistics were analyzed using linear mixed model analysis. SOVAT was statistically significant (α = .01) from SPSS-GIS for satisfaction and time (p < .002). Descriptive results indicated that participants had greater success in answering the tasks when using SOVAT as compared to SPSS-GIS. Conclusion. Using SOVAT, tasks were completed more efficiently, with a higher rate of success, and with greater satisfaction, than the combined use of SPSS and GIS. The results from this study indicate a potential for OLAP-GIS decision support systems as a valuable tool for CHA data analysis. © 2008 Scotch et al; licensee BioMed Central Ltd
- …
