924 research outputs found
Pushing the Limits: Cognitive, Affective, and Neural Plasticity Revealed by an Intensive Multifaceted Intervention.
Scientific understanding of how much the adult brain can be shaped by experience requires examination of how multiple influences combine to elicit cognitive, affective, and neural plasticity. Using an intensive multifaceted intervention, we discovered that substantial and enduring improvements can occur in parallel across multiple cognitive and neuroimaging measures in healthy young adults. The intervention elicited substantial improvements in physical health, working memory, standardized test performance, mood, self-esteem, self-efficacy, mindfulness, and life satisfaction. Improvements in mindfulness were associated with increased degree centrality of the insula, greater functional connectivity between insula and somatosensory cortex, and reduced functional connectivity between posterior cingulate cortex (PCC) and somatosensory cortex. Improvements in working memory and reading comprehension were associated with increased degree centrality of a region within the middle temporal gyrus (MTG) that was extensively and predominately integrated with the executive control network. The scope and magnitude of the observed improvements represent the most extensive demonstration to date of the considerable human capacity for change. These findings point to higher limits for rapid and concurrent cognitive, affective, and neural plasticity than is widely assumed
Recommended from our members
Human Vault Nanoparticle Targeted Delivery of Antiretroviral Drugs to Inhibit Human Immunodeficiency Virus Type 1 Infection.
"Vaults" are ubiquitously expressed endogenous ribonucleoprotein nanoparticles with potential utility for targeted drug delivery. Here, we show that recombinant human vault nanoparticles are readily engulfed by certain key human peripheral blood mononuclear cells (PBMC), predominately dendritic cells, monocytes/macrophages, and activated T cells. As these cell types are the primary targets for human immunodeficiency virus type 1 (HIV-1) infection, we examined the utility of recombinant human vaults for targeted delivery of antiretroviral drugs. We chemically modified three different antiretroviral drugs, zidovudine, tenofovir, and elvitegravir, for direct conjugation to vaults. Tested in infection assays, drug-conjugated vaults inhibited HIV-1 infection of PBMC with equivalent activity to free drugs, indicating vault delivery and drug release in the cytoplasm of HIV-1-susceptible cells. The ability to deliver functional drugs via vault nanoparticle conjugates suggests their potential utility for targeted drug delivery against HIV-1
Unveiling the intruder deformed 0 state in Si
The 0 state in Si has been populated at the {\sc Ganil/Lise3}
facility through the -decay of a newly discovered 1 isomer in
Al of 26(1) ms half-life. The simultaneous detection of pairs
allowed the determination of the excitation energy E(0)=2719(3) keV and
the half-life T=19.4(7) ns, from which an electric monopole strength of
(E0)=13.0(0.9) was deduced. The 2 state is
observed to decay both to the 0 ground state and to the newly observed
0 state (via a 607(2) keV transition) with a ratio
R(2)=1380(717). Gathering all
information, a weak mixing with the 0 and a large deformation parameter
of =0.29(4) are found for the 0 state, in good agreement with
shell model calculations using a new {\sc sdpf-u-mix} interaction allowing
\textit{np-nh} excitations across the N=20 shell gap.Comment: 5 pages, 3 figures, accepted for publication in Physical Review
Letter
Automated diffeomorphic registration of anatomical structures with rigid parts: application to dynamic cervical MRI.
International audienceWe propose an iterative two-step method to compute a diffeomorphic non-rigid transformation between images of anatomical structures with rigid parts, without any user intervention or prior knowledge on the image intensities. First we compute spatially sparse, locally optimal rigid transformations between the two images using a new block matching strategy and an efficient numerical optimiser (BOBYQA). Then we derive a dense, regularised velocity field based on these local transformations using matrix logarithms and M-smoothing. These two steps are iterated until convergence and the final diffeomorphic transformation is defined as the exponential of the accumulated velocity field. We show our algorithm to outperform the state-of-the-art log-domain diffeomorphic demons method on dynamic cervical MRI data
Search for new resonant states in 10C and 11C and their impact on the cosmological lithium problem
The observed primordial 7Li abundance in metal-poor halo stars is found to be
lower than its Big-Bang nucleosynthesis (BBN) calculated value by a factor of
approximately three. Some recent works suggested the possibility that this
discrepancy originates from missing resonant reactions which would destroy the
7Be, parent of 7Li. The most promising candidate resonances which were found
include a possibly missed 1- or 2- narrow state around 15 MeV in the compound
nucleus 10C formed by 7Be+3He and a state close to 7.8 MeV in the compound
nucleus 11C formed by 7Be+4He. In this work, we studied the high excitation
energy region of 10C and the low excitation energy region in 11C via the
reactions 10B(3He,t)10C and 11B(3He,t)11C, respectively, at the incident energy
of 35 MeV. Our results for 10C do not support 7Be+3He as a possible solution
for the 7Li problem. Concerning 11C results, the data show no new resonances in
the excitation energy region of interest and this excludes 7Be+4He reaction
channel as an explanation for the 7Li deficit.Comment: Accepted for publication in Phys. Rev. C (Rapid Communication
Prolate-Spherical Shape Coexistence at N=28 in S
The structure of S has been studied using delayed and
electron spectroscopy at \textsc{ganil}. The decay rates of the 0
isomeric state to the 2 and 0 states have been measured for the
first time, leading to a reduced transition probability
B(E2~:~20= 8.4(26)~efm and a monopole
strength (E0~:~00
=~8.7(7)10. Comparisons to shell model calculations point
towards prolate-spherical shape coexistence and a phenomenological two level
mixing model is used to extract a weak mixing between the two configurations.Comment: 5 pages, 3 figures, accepted for publication in Physical Review
Letter
Measurement of the 20 and 90 keV resonances in the N reaction via THM
The reaction is of primary importance in
several astrophysical scenarios, including fluorine nucleosynthesis inside AGB
stars as well as oxygen and nitrogen isotopic ratios in meteorite grains. Thus
the indirect measurement of the low energy region of the reaction has been performed to reduce the nuclear
uncertainty on theoretical predictions. In particular the strength of the 20
and 90 keV resonances have been deduced and the change in the reaction rate
evaluated.Comment: 4 pages, 4 figures, submitted to PR
Collapse of the N=28 shell closure in Si
The energies of the excited states in very neutron-rich Si and
P have been measured using in-beam -ray spectroscopy from the
fragmentation of secondary beams of S at 39 A.MeV. The low 2
energy of Si, 770(19) keV, together with the level schemes of
P provide evidence for the disappearance of the Z=14 and N=28
spherical shell closures, which is ascribed mainly to the action of
proton-neutron tensor forces. New shell model calculations indicate that
Si is best described as a well deformed oblate rotor.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev. let
Probing Nuclear forces beyond the drip-line using the mirror nuclei N and F
Radioactive beams of O and O were used to populate the resonant
states 1/2, 5/2 and in the unbound F and F
nuclei respectively by means of proton elastic scattering reactions in inverse
kinematics. Based on their large proton spectroscopic factor values, the
resonant states in F can be viewed as a core of O plus a proton
in the 2s or 1d shell and a neutron in 1p. Experimental
energies were used to derive the strength of the 2s-1p and
1d-1p proton-neutron interactions. It is found that the former
changes by 40% compared with the mirror nucleus N, and the second by
10%. This apparent symmetry breaking of the nuclear force between mirror nuclei
finds explanation in the role of the large coupling to the continuum for the
states built on an proton configuration.Comment: 6 pages, 3 figures, 2 tables, accepted for publication as a regular
article in Physical Review
Low-scale warped extra dimension and its predilection for multiple top quarks
Within warped extra dimension models that explain flavor through geometry,
flavor changing neutral current constraints generally force the Kaluza-Klein
scale to be above many TeV. This creates tension with a natural electroweak
scale. On the other hand, a much lower scale compatible with precision
electroweak and flavor changing neutral current constraints is allowed if we
decouple the Kaluza-Klein states of Standard Model gauge bosons from light
fermions bulk mass parameters). The main
signature for this approach is four top quark production via the Kaluza-Klein
excitations' strong coupling to top quarks. We study single lepton, like-sign
dilepton, and trilepton observables of four-top events at the Large Hadron
Collider. The like-sign dilepton signature typically has the largest discovery
potential for a strongly coupled right-handed top case (M_{KK} \sim 2-2.5
\TeV), while single lepton is the better when the left-handed top couples most
strongly (M_{KK} \sim 2 \TeV). We also describe challenging lepton-jet
collimation issues in the like-sign dilepton and trilepton channels. An
alternative single lepton observable is considered which takes advantage of the
many bottom quarks in the final state. Although searches of other particles may
compete, we find that four top production via Kaluza-Klein gluons is most
promising in a large region of this parameter space.Comment: 35 pages, 8 figures. discussions improved, references adde
- …
