82 research outputs found

    Evolution of fNL to the adiabatic limit

    Get PDF
    We study inflationary perturbations in multiple-field models, for which zeta typically evolves until all isocurvature modes decay--the "adiabatic limit". We use numerical methods to explore the sensitivity of the nonlinear parameter fNL to the process by which this limit is achieved, finding an appreciable dependence on model-specific data such as the time at which slow-roll breaks down or the timescale of reheating. In models with a sum-separable potential where the isocurvature modes decay before the end of the slow-roll phase we give an analytic criterion for the asymptotic value of fNL to be large. Other examples can be constructed using a waterfall field to terminate inflation while fNL is transiently large, caused by descent from a ridge or convergence into a valley. We show that these two types of evolution are distinguished by the sign of the bispectrum, and give approximate expressions for the peak fNL.Comment: v1: 25 pages, plus Appendix and bibliography, 6 figures. v2: minor edits to match published version in JCA

    Moment transport equations for the primordial curvature perturbation

    Full text link
    In a recent publication, we proposed that inflationary perturbation theory can be reformulated in terms of a probability transport equation, whose moments determine the correlation properties of the primordial curvature perturbation. In this paper we generalize this formulation to an arbitrary number of fields. We deduce ordinary differential equations for the evolution of the moments of zeta on superhorizon scales, which can be used to obtain an evolution equation for the dimensionless bispectrum, fNL. Our equations are covariant in field space and allow identification of the source terms responsible for evolution of fNL. In a model with M scalar fields, the number of numerical integrations required to obtain solutions of these equations scales like O(M^3). The performance of the moment transport algorithm means that numerical calculations with M >> 1 fields are straightforward. We illustrate this performance with a numerical calculation of fNL in Nflation models containing M ~ 10^2 fields, finding agreement with existing analytic calculations. We comment briefly on extensions of the method beyond the slow-roll approximation, or to calculate higher order parameters such as gNL.Comment: 23 pages, plus appendices and references; 4 figures. v2: incorrect statements regarding numerical delta N removed from Sec. 4.3. Minor modifications elsewher

    Transport equations for the inflationary trispectrum

    Get PDF
    We use transport techniques to calculate the trispectrum produced in multiple-field inflationary models with canonical kinetic terms. Our method allows the time evolution of the local trispectrum parameters, tauNL and gNL, to be tracked throughout the inflationary phase. We illustrate our approach using examples. We give a simplified method to calculate the superhorizon part of the relation between field fluctuations on spatially flat hypersurfaces and the curvature perturbation on uniform density slices, and obtain its third-order part for the first time. We clarify how the 'backwards' formalism of Yokoyama et al. relates to our analysis and other recent work. We supply explicit formulae which enable each inflationary observable to be computed in any canonical model of interest, using a suitable first-order ODE solver.Comment: 24 pages, plus references and appendix. v2: matches version published in JCAP; typo fixed in Eq. (54

    Separable and non-separable multi-field inflation and large non-Gaussianity

    Full text link
    In this paper we provide a general framework based on δN\delta N formalism to estimate the cosmological observables pertaining to the cosmic microwave background radiation for non-separable potentials, and for generic \emph{end of inflation} boundary conditions. We provide analytical and numerical solutions to the relevant observables by decomposing the cosmological perturbations along the curvature and the isocurvature directions, \emph{instead of adiabatic and entropy directions}. We then study under what conditions large bi-spectrum and tri-spectrum can be generated through phase transition which ends inflation. In an illustrative example, we show that large fNLO(80)f_{NL}\sim {\cal O}(80) and τNLO(20000)\tau_{NL}\sim {\cal O}(20000) can be obtained for the case of separable and non-separable inflationary potentials.Comment: 21 pages, 6 figure

    The curvature perturbation at second order

    Get PDF
    We give an explicit relation, up to second-order terms, between scalar-field fluctuations defined on spatially-flat slices and the curvature perturbation on uniform-density slices. This expression is a necessary ingredient for calculating observable quantities at second-order and beyond in multiple-field inflation. We show that traditional cosmological perturbation theory and the `separate universe' approach yield equivalent expressions for superhorizon wavenumbers, and in particular that all nonlocal terms can be eliminated from the perturbation-theory expressions

    Qualitative Approach to Semi-Classical Loop Quantum Cosmology

    Full text link
    Recently the mechanism was found which allows avoidance of the cosmological singularity within the semi-classical formulation of Loop Quantum Gravity. Numerical studies show that the presence of self-interaction potential of the scalar field allows generation of initial conditions for successful slow-roll inflation. In this paper qualitative analysis of dynamical system, corresponding to cosmological equations of Loop Quantum Gravity is performed. The conclusion on singularity avoidance in positively curved cosmological models is confirmed. Two cases are considered, the massless (with flat potential) and massive scalar field. Explanation of initial conditions generation for inflation in models with massive scalar field is given. The bounce is discussed in models with zero spatial curvature and negative potentials.Comment: Online at http://www.iop.org/EJ/abstract/1475-7516/2004/07/01

    Large-scale Perturbations from the Waterfall Field in Hybrid Inflation

    Get PDF
    We estimate large-scale curvature perturbations from isocurvature fluctuations in the waterfall field during hybrid inflation, in addition to the usual inflaton field perturbations. The tachyonic instability at the end of inflation leads to an explosive growth of super-Hubble scale perturbations, but they retain the steep blue spectrum characteristic of vacuum fluctuations in a massive field during inflation. The power spectrum thus peaks around the Hubble-horizon scale at the end of inflation. We extend the usual delta-N formalism to include the essential role of these small fluctuations when estimating the large-scale curvature perturbation. The resulting curvature perturbation due to fluctuations in the waterfall field is second-order and the spectrum is expected to be of order 10^{-54} on cosmological scales.Comment: 10 pages, 4 figures; v2 comments added on application of delta-N formalism including Hubble scale fluctuation

    Inflationary perturbation theory is geometrical optics in phase space

    Full text link
    A pressing problem in comparing inflationary models with observation is the accurate calculation of correlation functions. One approach is to evolve them using ordinary differential equations ("transport equations"), analogous to the Schwinger-Dyson hierarchy of in-out quantum field theory. We extend this approach to the complete set of momentum space correlation functions. A formal solution can be obtained using raytracing techniques adapted from geometrical optics. We reformulate inflationary perturbation theory in this language, and show that raytracing reproduces the familiar "delta N" Taylor expansion. Our method produces ordinary differential equations which allow the Taylor coefficients to be computed efficiently. We use raytracing methods to express the gauge transformation between field fluctuations and the curvature perturbation, zeta, in geometrical terms. Using these results we give a compact expression for the nonlinear gauge-transform part of fNL in terms of the principal curvatures of uniform energy-density hypersurfaces in field space.Comment: 22 pages, plus bibliography and appendix. v2: minor changes, matches version published in JCA
    corecore