7,202 research outputs found

    On the Hilbert scheme of curves in higher-dimensional projective space

    Full text link
    In this paper we prove that, for any n3n\ge 3, there exist infinitely many rNr\in \N and for each of them a smooth, connected curve CrC_r in r\P^r such that CrC_r lies on exactly nn irreducible components of the Hilbert scheme \hilb(\P^r). This is proven by reducing the problem to an analogous statement for the moduli of surfaces of general type.Comment: latex, 12 pages, no figure

    Impurity in a bosonic Josephson junction: swallowtail loops, chaos, self-trapping and the poor man's Dicke model

    Full text link
    We study a model describing NN identical bosonic atoms trapped in a double-well potential together with a single impurity atom, comparing and contrasting it throughout with the Dicke model. As the boson-impurity coupling strength is varied, there is a symmetry-breaking pitchfork bifurcation which is analogous to the quantum phase transition occurring in the Dicke model. Through stability analysis around the bifurcation point, we show that the critical value of the coupling strength has the same dependence on the parameters as the critical coupling value in the Dicke model. We also show that, like the Dicke model, the mean-field dynamics go from being regular to chaotic above the bifurcation and macroscopic excitations of the bosons are observed. Overall, the boson-impurity system behaves like a poor man's version of the Dicke model.Comment: 17 pages, 16 figure

    Dicke-type phase transition in a multimode optomechanical system

    Full text link
    We consider the "membrane in the middle" optomechanical model consisting of a laser pumped cavity which is divided in two by a flexible membrane that is partially transmissive to light and subject to radiation pressure. Steady state solutions at the mean-field level reveal that there is a critical strength of the light-membrane coupling above which there is a symmetry breaking bifurcation where the membrane spontaneously acquires a displacement either to the left or the right. This bifurcation bears many of the signatures of a second order phase transition and we compare and contrast it with that found in the Dicke model. In particular, by studying limiting cases and deriving dynamical critical exponents using the fidelity susceptibility method, we argue that the two models share very similar critical behaviour. For example, the obtained critical exponents indicate that they fall within the same universality class. Away from the critical regime we identify, however, some discrepancies between the two models. Our results are discussed in terms of experimentally relevant parameters and we evaluate the prospects for realizing Dicke-type physics in these systems.Comment: 14 pages, 6 figure

    Ultradiscretization of the solution of periodic Toda equation

    Full text link
    A periodic box-ball system (pBBS) is obtained by ultradiscretizing the periodic discrete Toda equation (pd Toda eq.). We show the relation between a Young diagram of the pBBS and a spectral curve of the pd Toda eq.. The formula for the fundamental cycle of the pBBS is obtained as a colloraly.Comment: 41 pages; 7 figure

    Aux Etats-Unis, l’enseignement des maths est totalement obsolète ! Favorisons des apprentissages concrets face aux cursus abscons et abstraits, Paris, 2011.

    Get PDF
    Recorte de um artigo do jornal francês Le Monde. O original pertence à professora Lydia Condé Lamparelli, fotografia autorizada pela mesma.Recorte de um artigo do jornal Le Monde, com criticas à realidade do ensino de matemática nos Estados Unidos. Os autores criticam o fato de boa parte dos conteúdos aprendidos não terão nenhuma utilidade para a vida da maioria dos alunos, a não ser aqueles que se dediquem a profissões como matemáticos, físicos, engenheiros. Advogam, portanto a restrição do ensino dos conteúdos de matemática àqueles conteúdos que podem, claramente, serem empregados no dia a dia, o trabalho com os quais possibilitará o conhecimento da parte mais abstrata desses conhecimentos, defende uma alfabetização numérica

    Geodesic Completeness for Sobolev Metrics on the Space of Immersed Plane Curves

    Get PDF
    We study properties of Sobolev-type metrics on the space of immersed plane curves. We show that the geodesic equation for Sobolev-type metrics with constant coefficients of order 2 and higher is globally well-posed for smooth initial data as well as initial data in certain Sobolev spaces. Thus the space of closed plane curves equipped with such a metric is geodesically complete. We find lower bounds for the geodesic distance in terms of curvature and its derivatives

    Magnetic flux, Wilson line and orbifold

    Full text link
    We study torus/orbifold models with magnetic flux and Wilson line background. The number of zero-modes and their profiles depend on those backgrounds. That has interesting implications from the viewpoint of particle phenomenology.Comment: 1+17 pages, 1 figur

    Solution of the generalized periodic discrete Toda equation II; Theta function solution

    Full text link
    We construct the theta function solution to the initial value problem for the generalized periodic discrete Toda equation.Comment: 11 page

    Noncommutative geometrical structures of entangled quantum states

    Full text link
    We study the noncommutative geometrical structures of quantum entangled states. We show that the space of a pure entangled state is a noncommutative space. In particular we show that by rewritten the conifold or the Segre variety we can get a qq-deformed relation in noncommutative geometry. We generalized our construction into a multi-qubit state. We also in detail discuss the noncommutative geometrical structure of a three-qubit state.Comment: 7 page

    Notes on Euclidean Wilson loops and Riemann Theta functions

    Full text link
    The AdS/CFT correspondence relates Wilson loops in N=4 SYM theory to minimal area surfaces in AdS5 space. In this paper we consider the case of Euclidean flat Wilson loops which are related to minimal area surfaces in Euclidean AdS3 space. Using known mathematical results for such minimal area surfaces we describe an infinite parameter family of analytic solutions for closed Wilson loops. The solutions are given in terms of Riemann theta functions and the validity of the equations of motion is proven based on the trisecant identity. The world-sheet has the topology of a disk and the renormalized area is written as a finite, one-dimensional contour integral over the world-sheet boundary. An example is discussed in detail with plots of the corresponding surfaces. Further, for each Wilson loops we explicitly construct a one parameter family of deformations that preserve the area. The parameter is the so called spectral parameter. Finally, for genus three we find a map between these Wilson loops and closed curves inside the Riemann surface.Comment: 35 pages, 7 figures, pdflatex. V2: References added. Typos corrected. Some points clarifie
    corecore