110 research outputs found
Arbuscular mycorrhizal colonisation of roots of grass species differing in invasiveness
Recent research indicates that the soil microbial community, particularly arbuscular mycorrhizal
fungi (AMF), can influence plant invasion in several ways. We tested if 1) invasive species are
colonised by AMF to a lower degree than resident native species, and 2) AMF colonisation of native
plants is lower in a community inhabited by an invasive species than in an uninvaded resident
community. The two tests were run in semiarid temperate grasslands on grass (Poaceae) species,
and the frequency and intensity of mycorrhizal colonisation, and the proportion of arbuscules and
vesicles in plant roots have been measured. In the first test, grasses representing three classes of
invasiveness were included: invasive species, resident species becoming abundant upon
disturbance, and non-invasive native species. Each class contained one C3 and one C4 species. The
AMF colonisation of the invasive Calamagrostis epigejos and Cynodon dactylon was consistently
lower than that of the non-invasive native Chrysopogon gryllus and Bromus inermis, and contained
fewer arbuscules than the post-disturbance dominant resident grasses Bothriochloa ischaemum and
Brachypodium pinnatum. The C3 and C4 grasses behaved alike despite their displaced phenologies
in these habitats. The second test compared AMF colonisation for sand grassland dominant grasses
Festuca vaginata and Stipa borysthenica in stands invaded by either C. epigejos or C. dactylon, and
in the uninvaded natural community. Resident grasses showed lower degree of AMF colonisation in the invaded stand compared to the uninvaded natural community with F. vaginata responding so to
both invaders, while S. borysthenica responding to C. dactylon only. These results indicate that
invasive grasses supposedly less reliant on AMF symbionts have the capacity of altering the soil
mycorrhizal community in such a way that resident native species can establish a considerably
reduced extent of the beneficial AMF associations, hence their growth, reproduction and ultimately
abundance may decline. Accumulating evidence suggests that such indirect influences of invasive
alien plants on resident native species mediated by AMF or other members of the soil biota is probably more the rule than the exception
Linking the community structure of arbuscular mycorrhizal fungi and plants: a story of interdependence?
Arbuscular mycorrhizal fungi (AMF) are crucial to plants and vice versa, but little is known about the factors linking the community structure of the two groups. We investigated the association between AMF and the plant community structure in the nearest neighborhood of Festuca brevipila in a semiarid grassland with steep environmental gradients, using high-throughput sequencing of the Glomeromycotina (former Glomeromycota). We focused on the Passenger, Driver and Habitat hypotheses: (i) plant communities drive AMF (passenger); (ii) AMF communities drive the plants (driver); (iii) the environment shapes both communities causing covariation. The null hypothesis is that the two assemblages are independent and this study offers a spatially explicit novel test of it in the field at multiple, small scales. The AMF community consisted of 71 operational taxonomic units, the plant community of 47 species. Spatial distance and spatial variation in the environment were the main determinants of the AMF community. The structure of the plant community around the focal plant was a poor predictor of AMF communities, also in terms of phylogenetic community structure. Some evidence supports the passenger hypothesis, but the relative roles of the factors structuring the two groups clearly differed, leading to an apparent decoupling of the two assemblages at the relatively small scale of this study. Community phylogenetic structure in AMF suggests an important role of within-assemblage interactions
Stressed out symbiotes:hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi
Abiotic stress is a widespread threat to both plant and soil communities. Arbuscular mycorrhizal (AM) fungi can alleviate effects of abiotic stress by improving host plant stress tolerance, but the direct effects of abiotic stress on AM fungi are less well understood. We propose two hypotheses predicting how AM fungi will respond to abiotic stress. The stress exclusion hypothesis predicts that AM fungal abundance and diversity will decrease with persistent abiotic stress. The mycorrhizal stress adaptation hypothesis predicts that AM fungi will evolve in response to abiotic stress to maintain their fitness. We conclude that abiotic stress can have effects on AM fungi independent of the effects on the host plant. AM fungal communities will change in composition in response to abiotic stress, which may mean the loss of important individual species. This could alter feedbacks to the plant community and beyond. AM fungi will adapt to abiotic stress independent of their host plant. The adaptation of AM fungi to abiotic stress should allow the maintenance of the plant-AM fungal mutualism in the face of changing climates. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00442-016-3673-7) contains supplementary material, which is available to authorized users
Characterization of arbuscular mycorrhizal fungus communities of Aquilaria crassna and Tectona grandis roots and soils in Thailand plantations
Aquilaria crassna Pierre ex Lec. and Tectona grandis Linn.f. are sources of resin-suffused agarwood and teak timber, respectively. This study investigated arbuscular mycorrhizal (AM) fungus community structure in roots and rhizosphere soils of A. crassna and T. grandis from plantations in Thailand to understand whether AM fungal communities present in roots and rhizosphere soils vary with host plant species and study sites. Terminal restriction fragment length polymorphism complemented with clone libraries revealed that AM fungal community composition in A. crassna and T. grandis were similar. A total of 38 distinct terminal restriction fragments (TRFs) were found, 31 of which were shared between A. crassna and T. grandis. AM fungal communities in T. grandis samples from different sites were similar, as were those in A. crassna. The estimated average minimum numbers of AM fungal taxa per sample in roots and soils of T. grandis were at least 1.89 vs. 2.55, respectively, and those of A. crassna were 2.85 vs. 2.33 respectively. The TRFs were attributed to Claroideoglomeraceae, Diversisporaceae, Gigasporaceae and Glomeraceae. The Glomeraceae were found to be common in all study sites. Specific AM taxa in roots and soils of T. grandis and A. crassna were not affected by host plant species and sample source (root vs. soil) but affected by collecting site. Future inoculum production and utilization efforts can be directed toward the identified symbiotic associates of these valuable tree species to enhance reforestation efforts
Contrasting Diversity Patterns of Crenarchaeal, Bacterial and Fungal Soil Communities in an Alpine Landscape
International audienceBackground: The advent of molecular techniques in microbial ecology has aroused interest in gaining an understanding about the spatial distribution of regional pools of soil microbes and the main drivers responsible of these spatial patterns. Here, we assessed the distribution of crenarcheal, bacterial and fungal communities in an alpine landscape displaying high turnover in plant species over short distances. Our aim is to determine the relative contribution of plant species composition, environmental conditions, and geographic isolation on microbial community distribution. Methodology/Principal Findings: Eleven types of habitats that best represent the landscape heterogeneity were investigated. Crenarchaeal, bacterial and fungal communities were described by means of Single Strand Conformation Polymorphism. Relationships between microbial beta diversity patterns were examined by using Bray-Curtis dissimilarities and Principal Coordinate Analyses. Distance-based redundancy analyses and variation partitioning were used to estimate the relative contributions of different drivers on microbial beta diversity. Microbial communities tended to be habitat- specific and did not display significant spatial autocorrelation. Microbial beta diversity correlated with soil pH. Fungal beta- diversity was mainly related to soil organic matter. Though the effect of plant species composition was significant for all microbial groups, it was much stronger for Fungi. In contrast, geographic distances did not have any effect on microbial beta diversity. Conclusions/Significance: Microbial communities exhibit non-random spatial patterns of diversity in alpine landscapes. Crenarcheal, bacterial and fungal community turnover is high and associated with plant species composition through different set of soil variables, but is not caused by geographical isolation
Single-cell multiome and spatial profiling reveals pancreas cell type-specific gene regulatory programs driving type 1 diabetes progression
Cell type-specific regulatory programs that drive type 1 diabetes (T1D) in the pancreas are poorly understood. Here we performed single nucleus multiomics and spatial transcriptomics in up to 32 non-diabetic (ND), autoantibody-positive (AAB+), and T1D pancreas donors. Genomic profiles from 853,005 cells mapped to 12 pancreatic cell types, including multiple exocrine sub-types. Beta, acinar, and other cell types, and related cellular niches, had altered abundance and gene activity in T1D progression, including distinct pathways altered in AAB+ compared to T1D. We identified epigenomic drivers of gene activity in T1D and AAB+ which, combined with genetic association, revealed causal pathways of T1D risk including antigen presentation in beta cells. Finally, single cell and spatial profiles together revealed widespread changes in cell-cell signaling in T1D including signals affecting beta cell regulation. Overall, these results revealed drivers of T1D progression in the pancreas, which form the basis for therapeutic targets for disease prevention
Use of commercial bio-inoculants to increase agricultural production through improved phosphorus acquisition
Soil microorganisms and their role in the interactions between weeds and crops
The competition between weeds and crops is a topic of great interest, since this interaction can cause heavy losses in agriculture. Despite the existence of some studies on this subject, little is known about the importance of soil microorganisms in the modulation of weed-crop interactions. Plants compete for water and nutrients in the soil and the ability of a given species to use the available resources may be directly affected by the presence of some microbial groups commonly found in the soil. Arbuscular mycorrhizal fungi (AMF) are able to associate with plant roots and affect the ability of different species to absorb water and nutrients from the soil, promoting changes in plant growth. Other groups may promote positive or negative changes in plant growth, depending on the identity of the microbial and plant partners involved in the different interactions, changing the competitive ability of a given species. Recent studies have shown that weeds are able to associate with mycorrhizal fungi in agricultural environments, and root colonization by these fungi is affected by the presence of other weeds or crops species. In addition, weeds tend to have positive interactions with soil microorganisms while cultures may have neutral or negative interactions. Competition between weeds and crops promotes changes in the soil microbial community, which becomes different from that observed in monocultures, thus affecting the competitive ability of plants. When grown in competition, weeds and crops have different behaviors related to soil microorganisms, and the weeds seem to show greater dependence on associations with members of the soil microbiota to increase growth. These data demonstrate the importance of soil microorganisms in the modulation of the interactions between weeds and crops in agricultural environments. New perspectives and hypotheses are presented to guide future research in this area
DAYCENT National-Scale Simulations of Nitrous Oxide Emissions from Cropped Soils in the United States
Bacterial and Fungal Contributions to Carbon Sequestration in Agroecosystems
This paper reviews the current knowledge of microbial processes affecting C sequestration in agroecosystems. The microbial contri-bution to soil C storage is directly related to microbial community dynamics and the balance between formation and degradation of mi-crobial byproducts. Soil microbes also indirectly influence C cycling by improving soil aggregation, which physically protects soil organic matter (SOM). Consequently, the microbial contribution to C seques-tration is governed by the interactions between the amount of micro-bial biomass, microbial community structure, microbial byproducts, and soil properties such as texture, clay mineralogy, pore-size distribu-tion, and aggregate dynamics. The capacity of a soil to protect micro-bial biomass and microbially derived organic matter (MOM) is directly and/or indirectly (i.e., through physical protection by aggregates) related to the reactive properties of clays. However, the stabilizatio
- …
