17,479 research outputs found

    The Reionization History and Early Metal Enrichment inferred from the Gamma-Ray Burst Rate

    Get PDF
    Based on the gamma-ray burst (GRB) event rate at redshifts of 4z124 \leq z \leq 12, which is assessed by the spectral peak energy-to-luminosity relation recently found by Yonetoku et al., we observationally derive the star formation rate (SFR) for Pop III stars in a high redshift universe. As a result, we find that Pop III stars could form continuously at 4z124 \leq z \leq 12. Using the derived Pop III SFR, we attempt to estimate the ultraviolet (UV) photon emission rate at 7z127 \leq z \leq 12 in which redshift range no observational information has been hitherto obtained on ionizing radiation intensity. We find that the UV emissivity at 7z127 \leq z \leq 12 can make a noticeable contribution to the early reionization. The maximal emissivity is higher than the level required to keep ionizing the intergalactic matter at 7z127 \leq z \leq 12. However, if the escape fraction of ionizing photons from Pop III objects is smaller than 10%, then the IGM can be neutralized at some redshift, which may lead to the double reionization. As for the enrichment, the ejection of all metals synthesized in Pop III objects is marginally consistent with the IGM metallicity, although the confinement of metals in Pop III objects can reduce the enrichment significantly.Comment: 12 pages, 2 figures, ApJL accepte

    SL(2,C) Chern-Simons theory and the asymptotic behavior of the colored Jones polynomial

    Get PDF
    We clarify and refine the relation between the asymptotic behavior of the colored Jones polynomial and Chern-Simons gauge theory with complex gauge group SL(2,C). The precise comparison requires a careful understanding of some delicate issues, such as normalization of the colored Jones polynomial and the choice of polarization in Chern-Simons theory. Addressing these issues allows us to go beyond the volume conjecture and to verify some predictions for the behavior of the subleading terms in the asymptotic expansion of the colored Jones polynomial.Comment: 15 pages, 7 figure

    Carbon stars in the IRTS survey

    Full text link
    We have identified 139 cool carbon stars in the near-infrared spectro-photometric survey of the InfraRed Telescope in Space (IRTS) from the conspicuous presence of molecular absorption bands at 1.8, 3.1 and 3.8 microns. Among them 14 are new, bright (K ~ 4.0-7.0), carbon stars. We find a trend relating the 3.1 microns band strength to the K-L' color index, which is known to correlate with mass-loss rate. This could be an effect of a relation between the depth of the 3.1 microns feature and the degree of development of the extended stellar atmosphere where dust starts to form.Comment: accepted by the PASP; December 7, 200

    Birefringence in thermally anisotropic relativistic plasmas and its impact on laser-plasma interactions

    Full text link
    One of the paradigm-shifting phenomena triggered in laser-plasma interactions at relativistic intensities is the so-called relativistic transparency. As the electrons become heated by the laser to relativistic energies, the plasma becomes transparent to the laser light even though the plasma density is sufficiently high to reflect the laser pulse in the non-relativistic case. This paper highlights the impact that relativistic transparency can have on laser-matter interactions by focusing on a collective phenomenon that is associated with the onset of relativistic transparency: plasma birefringence in thermally anisotropic relativistic plasmas. The optical properties of such a system become dependent on the polarization of light, and this can serve as the basis for plasma-based optical devices or novel diagnostic capabilities

    Strict Limit on CPT Violation from Polarization of Gamma-Ray Bursts

    Full text link
    We report the strictest observational verification of CPT invariance in the photon sector, as a result of gamma-ray polarization measurement of distant gamma-ray bursts (GRBs), which are brightest stellar-size explosions in the universe. We detected the gamma-ray polarization of three GRBs with high significance, and the source distances may be constrained by a well-known luminosity indicator for GRBs. For the Lorentz- and CPT-violating dispersion relation E_{\pm}^2=p^2 \pm 2\xi p^3/M_{Pl}, where \pm denotes different circular polarization states of the photon, the parameter \xi is constrained as |\xi|<O(10^{-15}). Barring precise cancellation between quantum gravity effects and dark energy effects, the stringent limit on the CPT-violating effect leads to the expectation that quantum gravity presumably respects the CPT invariance.Comment: 4 pages; accepted for publication in Physical Review Letters; redshift estimates of GRBs changed (i.e z=0.382 was wrong for GRB 110721A) and calculations of \xi limit improved from the previous versio

    Spin Hall effect of conserved current: Conditions for a nonzero spin Hall current

    Full text link
    We study the spin Hall effect taking into account the impurity scattering effect as general as possible with the focus on the definition of the spin current. The conserved bulk spin current (Shi et al. [Phys. Rev. Lett. 96, 076604 (2006)]) satisfying the continuity equation of spin is considered in addition to the conventional one defined by the symmetric product of the spin and velocity operators. Conditions for non-zero spin Hall current are clarified. In particular, it is found that (i) the spin Hall current is non-zero in the Rashba model with a finite-range impurity potential, and (ii) the spin Hall current vanishes in the cubic Rashba model with a δ\delta-function impurity potential.Comment: 5 pages, minor change from the previous versio

    Spin-orbit lateral superlattices: energy bands and spin polarization in 2DEG

    Full text link
    The Bloch spinors, energy spectrum and spin density in energy bands are studied for the two-dimensional electron gas (2DEG) with Rashba spin-orbit (SO) interaction subject to one-dimensional (1D) periodic electrostatic potential of a lateral superlattice. The space symmetry of the Bloch spinors with spin parity is studied. It is shown that the Bloch spinors at fixed quasimomentum describe the standing spin waves with the wavelength equal to the superlattice period. The spin projections in these states have the components both parallel and transverse to the 2DEG plane. The anticrossing of the energy dispersion curves due to the interplay between the SO and periodic terms is observed, leading to the spin flip. The relation between the spin parity and the interband optical selection rules is discussed, and the effect of magnetization of the SO superlattice in the presence of external electric field is predicted.Comment: 6 pages, 5 figures, reported at the International Conferences "Nanophysics and Nanoelectronics" (Nizhny Novgorod, Russia, March 2006) and "Nanostructures: Physics and Technology" (St Petersburg, Russia, June 2006

    UV and X-ray Spectral Lines of FeXXIII Ion for Plasma Diagnostics

    Full text link
    We have calculated X-ray and UV spectra of Be-like Fe (FeXXIII) ion in collisional-radiative model including all fine-structure transitions among the 2s^2, 2s2p, 2p^2, 2snl, and 2pnl levels where n=3 and 4, adopting data for the collision strengths by Zhang & Sampson (1992) and by Sampson, Goett, & Clark (1984). Some line intensity ratios can be used for the temperature diagnostics. We show 5 ratios in UV region and 9 ratios in X-ray region as a function of electron temperature and density at 0.3keV < T_e < 10keV and ne=11025cm3n_e = 1 - 10^{25} cm^{-3}. The effect of cascade in these line ratios and in the level population densities are discussed.Comment: LaTeX, 18 pages, 10 Postscript figures. To appear in Physica Script

    Prototyping Operational Autonomy for Space Traffic Management

    Get PDF
    Current state of the art in Space Traffic Management (STM) relies on a handful of providers for surveillance and collision prediction, and manual coordination between operators. Neither is scalable to support the expected 10x increase in spacecraft population in less than 10 years, nor does it support automated manuever planning. We present a software prototype of an STM architecture based on open Application Programming Interfaces (APIs), drawing on previous work by NASA to develop an architecture for low-altitude Unmanned Aerial System Traffic Management. The STM architecture is designed to provide structure to the interactions between spacecraft operators, various regulatory bodies, and service suppliers, while maintaining flexibility of these interactions and the ability for new market participants to enter easily. Autonomy is an indispensable part of the proposed architecture in enabling efficient data sharing, coordination between STM participants and safe flight operations. Examples of autonomy within STM include syncing multiple non-authoritative catalogs of resident space objects, or determining which spacecraft maneuvers when preventing impending conjunctions between multiple spacecraft. The STM prototype is based on modern micro-service architecture adhering to OpenAPI standards and deployed in industry standard Docker containers, facilitating easy communication between different participants or services. The system architecture is designed to facilitate adding and replacing services with minimal disruption. We have implemented some example participant services (e.g. a space situational awareness provider/SSA, a conjunction assessment supplier/CAS, an automated maneuver advisor/AMA) within the prototype. Different services, with creative algorithms folded into then, can fulfil similar functional roles within the STM architecture by flexibly connecting to it using pre-defined APIs and data models, thereby lowering the barrier to entry of new players in the STM marketplace. We demonstrate the STM prototype on a multiple conjunction scenario with multiple maneuverable spacecraft, where an example CAS and AMA can recommend optimal maneuvers to the spacecraft operators, based on a predefined reward function. Such tools can intelligently search the space of potential collision avoidance maneuvers with varying parameters like lead time and propellant usage, optimize a customized reward function, and be implemented as a scheduling service within the STM architecture. The case study shows an example of autonomous maneuver planning is possible using the API-based framework. As satellite populations and predicted conjunctions increase, an STM architecture can facilitate seamless information exchange related to collision prediction and mitigation among various service applications on different platforms and servers. The availability of such an STM network also opens up new research topics on satellite maneuver planning, scheduling and negotiation across disjoint entities
    corecore