199 research outputs found
A tachyonic scalar field with mutually interacting components
We investigate the tachyonic cosmological potential in two
different cases of the quasi-exponential expansion of universe and discuss
various forms of interaction between the two components---matter and the
cosmological constant--- of the tachyonic scalar field, which leads to the
viable solutions of their respective energy densities. The distinction among
the interaction forms is shown to appear in the diagnostic. Further,
the role of the high- and low-redshift observations of the Hubble parameter is
discussed to determine the proportionality constants and hence the correct form
of matter--cosmological constant interaction.Comment: 14 page
Evolving Spatio-temporal Data Machines Based on the NeuCube Neuromorphic Framework: Design Methodology and Selected Applications
The paper describes a new type of evolving connectionist systems (ECOS) called evolving spatio-temporal data machines based on neuromorphic, brain-like information processing principles (eSTDM). These are multi-modular computer systems designed to deal with large and fast spatio/spectro temporal data using spiking neural networks (SNN) as major processing modules. ECOS and eSTDM in particular can learn incrementally from data streams, can include ‘on the fly’ new input variables, new output class labels or regression outputs, can continuously adapt their structure and functionality, can be visualised and interpreted for new knowledge discovery and for a better understanding of the data and the processes that generated it. eSTDM can be used for early event prediction due to the ability of the SNN to spike early, before whole input vectors (they were trained on) are presented. A framework for building eSTDM called NeuCube along with a design methodology for building eSTDM using this are presented. The implementation of this framework in MATLAB, Java, and PyNN (Python) is presented. The latter facilitates the use of neuromorphic hardware platforms to run the eSTDM. Selected examples are given of eSTDM for pattern recognition and early event prediction on EEG data, fMRI data, multisensory seismic data, ecological data, climate data, audio-visual data. Future directions are discussed, including extension of the NeuCube framework for building neurogenetic eSTDM and also new applications of eSTDM
Lack of an Association between Autoimmune Pancreatitis and Varicella Zoster Virus
No abstract available
Recommended from our members
Heterodimerization of Arabidopsis calcium/proton exchangers contributes to regulation of guard cell dynamics and plant defense responses.
Arabidopsis thaliana cation exchangers (CAX1 and CAX3) are closely related tonoplast-localized calcium/proton (Ca2+/H+) antiporters that contribute to cellular Ca2+ homeostasis. CAX1 and CAX3 were previously shown to interact in yeast; however, the function of this complex in plants has remained elusive. Here, we demonstrate that expression of CAX1 and CAX3 occurs in guard cells. Additionally, CAX1 and CAX3 are co-expressed in mesophyll tissue in response to wounding or flg22 treatment, due to the induction of CAX3 expression. Having shown that the transporters can be co-expressed in the same cells, we demonstrate that CAX1 and CAX3 can form homomeric and heteromeric complexes in plants. Consistent with the formation of a functional CAX1-CAX3 complex, CAX1 and CAX3 integrated into the yeast genome suppressed a Ca2+-hypersensitive phenotype of mutants defective in vacuolar Ca2+ transport, and demonstrated enzyme kinetics different from those of either CAX protein expressed by itself. We demonstrate that the interactions between CAX proteins contribute to the functioning of stomata, because stomata were more closed in cax1-1, cax3-1, and cax1-1/cax3-1 loss-of-function mutants due to an inability to buffer Ca2+ effectively. We hypothesize that the formation of CAX1-CAX3 complexes may occur in the mesophyll to affect intracellular Ca2+ signaling during defense responses
Polymorphism of a polymer precursor:metastable glycolide polymorph recovered via large scale high-pressure experiments
A novel polymorph of glycolide, the precursor to polyglycolic acid, has been observed at 0.6 GPa. Large scale high-pressure production has been performed and the seeds successfully used to aid crystallisation of the polymorph at ambient pressure. PIXEL calculations confirm the metastable nature of the polymorph. Subsequent experiments show that, whilst initially stable for 12 days, this may be a case of disappearing polymorphism
Risk of high blood pressure in salt workers working near salt milling plants: A cross-sectional and interventional study
BACKGROUND: Workers working close to salt milling plants may inhale salt particles floating in the air, leading to a rise in plasma sodium, which, in turn, may increase the blood pressure and the risk of hypertension. METHODS: To test the above hypothesis, occupational health check-up camps were organized near salt manufacturing units and all workers were invited for a free health examination. The workers who worked with dry salt in the vicinity of salt milling plants were defined as "non-brine workers," while those working in brine pans located far away from milling plants were defined as "brine workers." Blood pressure (BP) was measured during each clinical examination. In all, 474 non-brine workers and 284 brine workers were studied. RESULTS: Mean systolic blood pressure of non-brine workers (122.1 ± 13.3 mm Hg) was significantly higher than that of brine workers (118.8 ± 12.8 mm Hg, p < 0.01). Mean diastolic blood pressure of non-brine workers (71.5 ± 10.4 mm Hg) was significantly higher than that of brine workers (69.7 ± 9.4 mm Hg, p = 0.02). The prevalence of hypertension was significantly higher in non-brine workers (12.2%) than in brine workers (7.0%, p = 0.02). Nineteen salt workers were monitored while they used face masks and spectacles, for six days. Systolic, as well as diastolic, blood pressure of these workers began declining on the third day and continued to decline on the fourth day, but remained stationary up to the sixth day. The concentration of salt particles in the breathing zone of these workers was 376 mg/m(3 )air. CONCLUSION: Inhalation of salt particles in non-brine workers may be an occupational cause of increased blood pressure
The effect of compressive strain on the Raman modes of the dry and hydrated BaCe0.8Y0.2O3 proton conductor
The BaCe0.8Y0.2O3-{\delta} proton conductor under hydration and under
compressive strain has been analyzed with high pressure Raman spectroscopy and
high pressure x-ray diffraction. The pressure dependent variation of the Ag and
B2g bending modes from the O-Ce-O unit is suppressed when the proton conductor
is hydrated, affecting directly the proton transfer by locally changing the
electron density of the oxygen ions. Compressive strain causes a hardening of
the Ce-O stretching bond. The activation barrier for proton conductivity is
raised, in line with recent findings using high pressure and high temperature
impedance spectroscopy. The increasing Raman frequency of the B1g and B3g modes
thus implies that the phonons become hardened and increase the vibration energy
in the a-c crystal plane upon compressive strain, whereas phonons are relaxed
in the b-axis, and thus reveal softening of the Ag and B2g modes. Lattice
toughening in the a-c crystal plane raises therefore a higher activation
barrier for proton transfer and thus anisotropic conductivity. The experimental
findings of the interaction of protons with the ceramic host lattice under
external strain may provide a general guideline for yet to develop epitaxial
strained proton conducting thin film systems with high proton mobility and low
activation energy
- …
