150,254 research outputs found
Light echoes reveal an unexpectedly cool Eta Carinae during its 19th-century Great Eruption
Eta Carinae (Eta Car) is one of the most massive binary stars in the Milky
Way. It became the second-brightest star in the sky during its mid-19th century
"Great Eruption," but then faded from view (with only naked-eye estimates of
brightness). Its eruption is unique among known astronomical transients in that
it exceeded the Eddington luminosity limit for 10 years. Because it is only 2.3
kpc away, spatially resolved studies of the nebula have constrained the ejected
mass and velocity, indicating that in its 19th century eruption, Eta Car
ejected more than 10 M_solar in an event that had 10% of the energy of a
typical core-collapse supernova without destroying the star. Here we report the
discovery of light echoes of Eta Carinae which appear to be from the 1838-1858
Great Eruption. Spectra of these light echoes show only absorption lines, which
are blueshifted by -210 km/s, in good agreement with predicted expansion
speeds. The light-echo spectra correlate best with those of G2-G5 supergiant
spectra, which have effective temperatures of ~5000 K. In contrast to the class
of extragalactic outbursts assumed to be analogs of Eta Car's Great Eruption,
the effective temperature of its outburst is significantly cooler than allowed
by standard opaque wind models. This indicates that other physical mechanisms
like an energetic blast wave may have triggered and influenced the eruption.Comment: Accepted for publication by Nature; 4 pages, 4 figures, SI: 6 pages,
3 figures, 5 table
Solar wind-magnetosphere coupling and the distant magnetotail: ISEE-3 observations
ISEE-3 Geotail observations are used to investigate the relationship between the interplanetary magnetic field, substorm activity, and the distant magnetotail. Magnetic field and plasma observations are used to present evidence for the existence of a quasi-permanent, curved reconnection neutral line in the distant tail. The distance to the neutral line varies from absolute value of X = 120 to 140 R/sub e near the center of the tail to beyond absolute value of X = 200 R/sub e at the flanks. Downstream of the neutral line the plasma sheet magnetic field is shown to be negative and directly proportional to negative B/sub z in the solar wind as observed by IMP-8. V/sub x in the distant plasma sheet is also found to be proportional to IMF B/sub z with southward IMF producing the highest anti-solar flow velocities. A global dayside reconnection efficiency of 20 +- 5% is derived from the ISEE-3/IMP-8 magnetic field comparisons. Substorm activity, as measured by the AL index, produces enhanced negative B/sub z and tailward V/sub x in the distant plasma sheet in agreement with the basic predictions of the reconnection-based models of substorms. The rate of magnetic flux transfer out of the tail as a function of AL is found to be consistent with previous near-Earth studies. Similarly, the mass and energy fluxes carried by plasma sheet flow down the tail are consistent with theoretical mass and energy budgets for an open magnetosphere. In summary, the ISEE-3 Geotail observations appear to provide good support for reconnection models of solar wind-magnetosphere coupling and substorm energy rates
Retreating to nature : rethinking 'therapeutic landscapes'
There is a long history of removing oneself from ‘society’ in order to recuperate or repair. This paper considers a yoga and massage retreat in Southern Spain, and what opportunities this retreat experience might offer for recuperation and the creation of healthy bodies. The paper positions ‘nature’ as an active participant, and as ‘enrolled’ in the experiences of the retreat as a ‘therapeutic landscape’, and questions how and what particular aspects of yoga practice (in intimate relation with place) give rise to therapeutic experiences
Interacting Supernovae: Types IIn and Ibn
Supernovae (SNe) that show evidence of strong shock interaction between their
ejecta and pre-existing, slower circumstellar material (CSM) constitute an
interesting, diverse, and still poorly understood category of explosive
transients. The chief reason that they are extremely interesting is because
they tell us that in a subset of stellar deaths, the progenitor star may become
wildly unstable in the years, decades, or centuries before explosion. This is
something that has not been included in standard stellar evolution models, but
may significantly change the end product and yield of that evolution, and
complicates our attempts to map SNe to their progenitors. Another reason they
are interesting is because CSM interaction is an efficient engine for making
bright transients, allowing super-luminous transients to arise from normal SN
explosion energies, and allowing transients of normal SN luminosities to arise
from sub-energetic explosions or low radioactivity yield. CSM interaction
shrouds the fast ejecta in bright shock emission, obscuring our normal view of
the underlying explosion, and the radiation hydrodynamics of the interaction is
challenging to model. The CSM interaction may also be highly non-spherical,
perhaps linked to binary interaction in the progenitor system. In some cases,
these complications make it difficult to definitively tell the difference
between a core-collapse or thermonuclear explosion, or to discern between a
non-terminal eruption, failed SN, or weak SN. Efforts to uncover the physical
parameters of individual events and connections to possible progenitor stars
make this a rapidly evolving topic that continues to challenge paradigms of
stellar evolution.Comment: Final draft of a chapter in the "SN Handbook". Accepted. 25 pages, 3
fig
Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration
Problems related to the design and control of a mobile planetary vehicle to implement a systematic plan for the exploration of Mars are reported. Problem areas include: vehicle configuration, control, dynamics, systems and propulsion; systems analysis, terrain modeling and path selection; and chemical analysis of specimens. These tasks are summarized: vehicle model design, mathematical model of vehicle dynamics, experimental vehicle dynamics, obstacle negotiation, electrochemical controls, remote control, collapsibility and deployment, construction of a wheel tester, wheel analysis, payload design, system design optimization, effect of design assumptions, accessory optimal design, on-board computer subsystem, laser range measurement, discrete obstacle detection, obstacle detection systems, terrain modeling, path selection system simulation and evaluation, gas chromatograph/mass spectrometer system concepts, and chromatograph model evaluation and improvement
The molecular genetic analysis of the expanding pachyonychia congenita case collection
BACKGROUND: Pachyonychia congenita (PC) is a rare autosomal dominant keratinizing disorder characterized by severe, painful, palmoplantar keratoderma and nail dystrophy, often accompanied by oral leucokeratosis, cysts and follicular keratosis. It is caused by mutations in one of five keratin genes: KRT6A, KRT6B, KRT6C, KRT16 or KRT17. OBJECTIVES: To identify mutations in 84 new families with a clinical diagnosis of PC, recruited by the International Pachyonychia Congenita Research Registry during the last few years. METHODS: Genomic DNA isolated from saliva or peripheral blood leucocytes was amplified using primers specific for the PC-associated keratin genes and polymerase chain reaction products were directly sequenced. RESULTS: Mutations were identified in 84 families in the PC-associated keratin genes, comprising 46 distinct keratin mutations. Fourteen were previously unreported mutations, bringing the total number of different keratin mutations associated with PC to 105. CONCLUSIONS: By identifying mutations in KRT6A, KRT6B, KRT6C, KRT16 or KRT17, this study has confirmed, at the molecular level, the clinical diagnosis of PC in these families
Surface Screening Charge and Effective Charge
The charge on an atom at a metallic surface in an electric field is defined
as the field-derivative of the force on the atom, and this is consistent with
definitions of effective charge and screening charge. This charge can be found
from the shift in the potential outside the surface when the atoms are moved.
This is used to study forces and screening on surface atoms of Ag(001)
c -- Xe as a function of external field. It is found that at low
positive (outward) fields, the Xe with a negative effective charge of -0.093
is pushed into the surface. At a field of 2.3 V \AA the charge
changes sign, and for fields greater than 4.1 V \AA the Xe experiences
an outward force. Field desorption and the Eigler switch are discussed in terms
of these results.Comment: 4 pages, 1 figure, RevTex (accepted by PRL
Master-equation analysis of accelerating networks
In many real-world networks, the rates of node and link addition are time
dependent. This observation motivates the definition of accelerating networks.
There has been relatively little investigation of accelerating networks and
previous efforts at analyzing their degree distributions have employed
mean-field techniques. By contrast, we show that it is possible to apply a
master-equation approach to such network development. We provide full
time-dependent expressions for the evolution of the degree distributions for
the canonical situations of random and preferential attachment in networks
undergoing constant acceleration. These results are in excellent agreement with
results obtained from simulations. We note that a growing, non-equilibrium
network undergoing constant acceleration with random attachment is equivalent
to a classical random graph, bridging the gap between non-equilibrium and
classical equilibrium networks.Comment: 6 pages, 1 figure, 1 tabl
- …
