1,643 research outputs found
Some Fixed Point Theorems for Kannan Mappings
2000 Mathematics Subject Classification: Primary: 47H10; Secondary: 54H25.Some results on the existence and uniqueness of fixed points for Kannan mappings on admissible subsets of bounded metric spaces and on bounded closed convex subsets of complete convex metric spaces having uniform normal structure are proved in this paper. These results extend and generalize some results of Ismat Beg and Akbar Azam [Ind. J. Pure Appl. Math. 18 (1987), 594-596], A. A. Gillespie and B. B. Williams [J. Math. Anal. Appl. 74 (1980), 382-387] and of Yoichi Kijima and Wataru Takahashi [Kodai Math Sem. Rep. 21 (1969), 326-330]
In silico evolution of diauxic growth
The glucose effect is a well known phenomenon whereby cells, when presented with two different nutrients, show a diauxic growth pattern, i.e. an episode of exponential growth followed by a lag phase of reduced growth followed by a second phase of exponential growth. Diauxic growth is usually thought of as a an adaptation to maximise biomass production in an environment offering two or more carbon sources. While diauxic growth has been studied widely both experimentally and theoretically, the hypothesis that diauxic growth is a strategy to increase overall growth has remained an unconfirmed conjecture. Here, we present a minimal mathematical model of a bacterial nutrient uptake system and metabolism. We subject this model to artificial evolution to test under which conditions diauxic growth evolves. As a result, we find that, indeed, sequential uptake of nutrients emerges if there is competition for nutrients and the metabolism/uptake system is capacity limited. However, we also find that diauxic growth is a secondary effect of this system and that the speed-up of nutrient uptake is a much larger effect. Notably, this speed-up of nutrient uptake coincides with an overall reduction of efficiency. Our two main conclusions are: (i) Cells competing for the same nutrients evolve rapid but inefficient growth dynamics. (ii) In the deterministic models we use here no substantial lag-phase evolves. This suggests that the lag-phase is a consequence of stochastic gene expression
A fixed point theoremfor nonexpansive compact self-mapping
A mapping T from a topological space X to a topological space Y is said to be compact if T(X) is contained in a compact subset of Y . The aim of this paper is to prove the existence of fixed points of a nonexpansive compact self-mapping defined on a closed subset having a contractive jointly continuous family when the underlying space is a metric space. The proved result generalizes and extends several known results on the subject
Chemotaxis: a feedback-based computational model robustly predicts multiple aspects of real cell behaviour
The mechanism of eukaryotic chemotaxis remains unclear despite intensive study. The most frequently described mechanism acts through attractants causing actin polymerization, in turn leading to pseudopod formation and cell movement. We recently proposed an alternative mechanism, supported by several lines of data, in which pseudopods are made by a self-generated cycle. If chemoattractants are present, they modulate the cycle rather than directly causing actin polymerization. The aim of this work is to test the explanatory and predictive powers of such pseudopod-based models to predict the complex behaviour of cells in chemotaxis. We have now tested the effectiveness of this mechanism using a computational model of cell movement and chemotaxis based on pseudopod autocatalysis. The model reproduces a surprisingly wide range of existing data about cell movement and chemotaxis. It simulates cell polarization and persistence without stimuli and selection of accurate pseudopods when chemoattractant gradients are present. It predicts both bias of pseudopod position in low chemoattractant gradients and-unexpectedly-lateral pseudopod initiation in high gradients. To test the predictive ability of the model, we looked for untested and novel predictions. One prediction from the model is that the angle between successive pseudopods at the front of the cell will increase in proportion to the difference between the cell's direction and the direction of the gradient. We measured the angles between pseudopods in chemotaxing Dictyostelium cells under different conditions and found the results agreed with the model extremely well. Our model and data together suggest that in rapidly moving cells like Dictyostelium and neutrophils an intrinsic pseudopod cycle lies at the heart of cell motility. This implies that the mechanism behind chemotaxis relies on modification of intrinsic pseudopod behaviour, more than generation of new pseudopods or actin polymerization by chemoattractant
On strong proximinality in normed linear spaces
The paper deals with strong proximinality in normed linear spaces. It is proved that in a compactly locally uniformly rotund Banach space, proximinality, strong proximinality, weak approximative compactness and approximative compactness are all equivalent for closed convex sets. How strong proximinality can be transmitted to and from quotient spaces has also been discussed
Metrically Round and Sleek Metric Spaces
A round metric space is the one in which closure of each open ball is the
corresponding closed ball. By a sleek metric space, we mean a metric space in
which interior of each closed ball is the corresponding open ball. In this,
article we establish some results on round metric spaces and sleek metric
spaces.Comment: 13 pages, 10 Figure
- …
