786 research outputs found

    Molecular Clouds associated with the Type Ia SNR N103B in the Large Magellanic Cloud

    Full text link
    N103B is a Type Ia supernova remnant (SNR) in the Large Magellanic Cloud (LMC). We carried out new 12^{12}CO(JJ = 3-2) and 12^{12}CO(JJ = 1-0) observations using ASTE and ALMA. We have confirmed the existence of a giant molecular cloud (GMC) at VLSRV_\mathrm{LSR} \sim245 km s1^{-1} towards the southeast of the SNR using ASTE 12^{12}CO(JJ = 3-2) data at an angular resolution of \sim25"" (\sim6 pc in the LMC). Using the ALMA 12^{12}CO(JJ = 1-0) data, we have spatially resolved CO clouds along the southeastern edge of the SNR with an angular resolution of \sim1.8"" (\sim0.4 pc in the LMC). The molecular clouds show an expanding gas motion in the position-velocity diagram with an expansion velocity of 5\sim5 km s1^{-1}. The spatial extent of the expanding shell is roughly similar to that of the SNR. We also find tiny molecular clumps in the directions of optical nebula knots. We present a possible scenario that N103B exploded in the wind-bubble formed by the accretion winds from the progenitor system, and is now interacting with the dense gas wall. This is consistent with a single-degenerate scenario.Comment: 12 pages, 1 table, 8 figures, accepted for publication in The Astrophysical Journal (ApJ

    Magnetic moment of welded HTS samples: dependence on the current flowing through the welds

    Full text link
    We present a method to calculate the magnetic moments of the high-temperature superconducting (HTS) samples which consist of a few welded HTS parts. The approach is generalized for the samples of various geometrical shapes and an arbitrary number of welds. The obtained relations between the sample moment and the density of critical current, which flows through the welds, allow to use the magnetization loops for a quantitative characterization of the weld quality in a wide range of temperatures and/or magnetic fields.Comment: RevTeX4, 4 pages, 2 figures. Submitted to Supercond. Sci. Techno

    Vortex annihilation in the ordering kinetics of the O(2) model

    Full text link
    The vortex-vortex and vortex-antivortex correlation functions are determined for the two-dimensional O(2) model undergoing phase ordering. We find reasonably good agreement with simulation results for the vortex-vortex correlation function where there is a short-scaled distance depletion zone due to the repulsion of like-signed vortices. The vortex-antivortex correlation function agrees well with simulation results for intermediate and long-scaled distances. At short-scaled distances the simulations show a depletion zone not seen in the theory.Comment: 28 pages, REVTeX, submitted to Phys. Rev.

    Ohta-Jasnow-Kawasaki Approximation for Nonconserved Coarsening under Shear

    Full text link
    We analytically study coarsening dynamics in a system with nonconserved scalar order parameter, when a uniform time-independent shear flow is present. We use an anisotropic version of the Ohta-Jasnow-Kawasaki approximation to calculate the growth exponents in two and three dimensions: for d=3 the exponents we find are the same as expected on the basis of simple scaling arguments, that is 3/2 in the flow direction and 1/2 in all the other directions, while for d=2 we find an unusual behavior, in that the domains experience an unlimited narrowing for very large times and a nontrivial dynamical scaling appears. In addition, we consider the case where an oscillatory shear is applied to a two-dimensional system, finding in this case a standard t^1/2 growth, modulated by periodic oscillations. We support our two-dimensional results by means of numerical simulations and we propose to test our predictions by experiments on twisted nematic liquid crystals.Comment: 25 RevTeX pages, 7 EPS figures. To be published in Phys. Rev.

    Selective excitation of metastable atomic states by femto- and attosecond laser pulses

    Full text link
    The possibility of achieving highly selective excitation of low metastable states of hydrogen and helium atoms by using short laser pulses with reasonable parameters is demonstrated theoretically. Interactions of atoms with the laser field are studied by solving the close-coupling equations without discretization. The parameters of laser pulses are calculated using different kinds of optimization procedures. For the excitation durations of hundreds of femtoseconds direct optimization of the parameters of one and two laser pulses with Gaussian envelopes is used to introduce a number of simple schemes of selective excitation. To treat the case of shorter excitation durations, optimal control theory is used and the calculated optimal fields are approximated by sequences of pulses with reasonable shapes. A new way to achieve selective excitation of metastable atomic states by using sequences of attosecond pulses is introduced.Comment: To be published in Phys. Rev. A, 10 pages, 3 figure

    Dynamical Scaling: the Two-Dimensional XY Model Following a Quench

    Full text link
    To sensitively test scaling in the 2D XY model quenched from high-temperatures into the ordered phase, we study the difference between measured correlations and the (scaling) results of a Gaussian-closure approximation. We also directly compare various length-scales. All of our results are consistent with dynamical scaling and an asymptotic growth law L(t/ln[t/t0])1/2L \sim (t/\ln[t/t_0])^{1/2}, though with a time-scale t0t_0 that depends on the length-scale in question. We then reconstruct correlations from the minimal-energy configuration consistent with the vortex positions, and find them significantly different from the ``natural'' correlations --- though both scale with LL. This indicates that both topological (vortex) and non-topological (``spin-wave'') contributions to correlations are relevant arbitrarily late after the quench. We also present a consistent definition of dynamical scaling applicable more generally, and emphasize how to generalize our approach to other quenched systems where dynamical scaling is in question. Our approach directly applies to planar liquid-crystal systems.Comment: 10 pages, 10 figure

    Fluctuations and defect-defect correlations in the ordering kinetics of the O(2) model

    Full text link
    The theory of phase ordering kinetics for the O(2) model using the gaussian auxiliary field approach is reexamined from two points of view. The effects of fluctuations about the ordering field are included and we organize the theory such that the auxiliary field correlation function is analytic in the short-scaled distance (x) expansion. These two points are connected and we find in the refined theory that the divergence at the origin in the defect-defect correlation function g~(x)\tilde{g}(x) obtained in the original theory is removed. Modifications to the order-parameter autocorrelation exponent λ\lambda are computed.Comment: 29 pages, REVTeX, to be published in Phys. Rev. E. Minor grammatical/syntax changes from the origina

    Extreme Magnification Microlensing Event OGLE-2008-BLG-279: Strong Limits on Planetary Companions to the Lens Star

    Get PDF
    We analyze the extreme high-magnification microlensing event OGLE-2008-BLG-279, which peaked at a maximum magnification of A ~ 1600 on 30 May 2008. The peak of this event exhibits both finite-source effects and terrestrial parallax, from which we determine the mass of the lens, M_l=0.64 +/- 0.10 M_Sun, and its distance, D_l = 4.0 +/- 0.6. We rule out Jupiter-mass planetary companions to the lens star for projected separations in the range 0.5-20 AU. More generally, we find that this event was sensitive to planets with masses as small as 0.2 M_Earth ~= 2 M_Mars with projected separations near the Einstein ring (~3 AU).Comment: 25 pages, 7 figures, submitted to Ap

    Interpretation of Strong Short-Term Central Perturbations in the Light Curves of Moderate-Magnification Microlensing Events

    Get PDF
    To improve the planet detection efficiency, current planetary microlensing experiments are focused on high-magnification events searching for planetary signals near the peak of lensing light curves. However, it is known that central perturbations can also be produced by binary companions and thus it is important to distinguish planetary signals from those induced by binary companions. In this paper, we analyze the light curves of microlensing events OGLE-2007-BLG-137/MOA-2007-BLG-091, OGLE-2007-BLG-355/MOA-2007-BLG-278, and MOA-2007-BLG-199/OGLE-2007-BLG-419, for all of which exhibit short-term perturbations near the peaks of the light curves. From detailed modeling of the light curves, we find that the perturbations of the events are caused by binary companions rather than planets. From close examination of the light curves combined with the underlying physical geometry of the lens system obtained from modeling, we find that the short time-scale caustic-crossing feature occurring at a low or a moderate base magnification with an additional secondary perturbation is a typical feature of binary-lens events and thus can be used for the discrimination between the binary and planetary interpretations.Comment: 17 pages, 4 figures, 1 tabl
    corecore