8,133 research outputs found

    Synthetic aperture radar images of ocean waves, theories of imaging physics and experimental tests

    Get PDF
    The physical mechanism for the synthetic Aperture Radar (SAR) imaging of ocean waves is investigated through the use of analytical models. The models are tested by comparison with data sets from the SEASAT mission and airborne SAR's. Dominant ocean wavelengths from SAR estimates are biased towards longer wavelengths. The quasispecular scattering mechanism agrees with experimental data. The Doppler shift for ship wakes is that of the mean sea surface

    Protecting the SWAP\sqrt{SWAP} operation from general and residual errors by continuous dynamical decoupling

    Full text link
    We study the occurrence of errors in a continuously decoupled two-qubit state during a SWAP\sqrt{SWAP} quantum operation under decoherence. We consider a realization of this quantum gate based on the Heisenberg exchange interaction, which alone suffices for achieving universal quantum computation. Furthermore, we introduce a continuous-dynamical-decoupling scheme that commutes with the Heisenberg Hamiltonian to protect it from the amplitude damping and dephasing errors caused by the system-environment interaction. We consider two error-protection settings. One protects the qubits from both amplitude damping and dephasing errors. The other features the amplitude damping as a residual error and protects the qubits from dephasing errors only. In both settings, we investigate the interaction of qubits with common and independent environments separately. We study how errors affect the entanglement and fidelity for different environmental spectral densities.Comment: Extended version of arXiv:1005.1666. To appear in PR

    Nonlinear metrology with a quantum interface

    Full text link
    We describe nonlinear quantum atom-light interfaces and nonlinear quantum metrology in the collective continuous variable formalism. We develop a nonlinear effective Hamiltonian in terms of spin and polarization collective variables and show that model Hamiltonians of interest for nonlinear quantum metrology can be produced in 87^{87}Rb ensembles. With these Hamiltonians, metrologically relevant atomic properties, e.g. the collective spin, can be measured better than the "Heisenberg limit" 1/N\propto 1/N. In contrast to other proposed nonlinear metrology systems, the atom-light interface allows both linear and non-linear estimation of the same atomic quantities.Comment: 8 pages, 1 figure

    Evolution of the Mass-Metallicity relations in passive and star-forming galaxies from SPH-cosmological simulations

    Full text link
    We present results from SPH-cosmological simulations, including self-consistent modelling of SN feedback and chemical evolution, of galaxies belonging to two clusters and twelve groups. We reproduce the mass-metallicity (ZM) relation of galaxies classified in two samples according to their star-forming activity, as parametrized by their sSFR, across a redshift range up to z=2. Its slope shows irrelevant evolution in the passive sample, being steeper in groups than in clusters. However, the sub-sample of high-mass passive galaxies only is characterized by a steep increase of the slope with redshift, from which it can be inferred that the bulk of the slope evolution of the ZM relation is driven by the more massive passive objects. (...ABRIDGED...) The ZM relation for the star-forming sample reveals an increasing scatter with redshift, indicating that it is still being built at early epochs. The star-forming galaxies make up a tight sequence in the SFR-M_* plane at high redshift, whose scatter increases with time alongside with the consolidation of the passive sequence. We also confirm the anti-correlation between sSFR and stellar mass, pointing at a key role of the former in determining the galaxy downsizing, as the most significant means of diagnostics of the star formation efficiency. Likewise, an anti-correlation between sSFR and metallicity can be established for the star-forming galaxies, while on the contrary more active galaxies in terms of simple SFR are also metal-richer. We discuss these results in terms of the mechanisms driving the evolution within the high- and low-mass regimes at different epochs: mergers, feedback-driven outflows and the intrinsic variation of the star formation efficiency.Comment: Emended list of author

    A study on the multicolour evolution of Red Sequence galaxy populations: insights from hydrodynamical simulations and semi-analytical models

    Get PDF
    By means of our own cosmological-hydrodynamical simulation and semi-analytical model we studied galaxy population properties in clusters and groups, spanning over 10 different bands from UV to NIR, and their evolution since redshift z=2. We compare our results in terms of galaxy red/blue fractions and luminous-to-faint ratio (LFR) on the Red Sequence (RS) with recent observational data reaching beyond z=1.5. Different selection criteria were tested in order to retrieve galaxies belonging to the RS: either by their quiescence degree measured from their specific SFR ("Dead Sequence"), or by their position in a colour-colour plane which is also a function of sSFR. In both cases, the colour cut and the limiting magnitude threshold were let evolving with redshift, in order to follow the natural shift of the characteristic luminosity in the LF. We find that the Butcher-Oemler effect is wavelength-dependent, with the fraction of blue galaxies increasing steeper in optical colours than in NIR. Besides, only when applying a lower limit in terms of fixed absolute magnitude, a steep BO effect can be reproduced, while the blue fraction results less evolving when selecting samples by stellar mass or an evolving magnitude limit. We then find that also the RS-LFR behaviour, highly debated in the literature, is strongly dependent on the galaxy selection function: in particular its very mild evolution recovered when measured in terms of stellar mass, is in agreement with values reported for some of the highest redshift confirmed (proto)clusters. As to differences through environments, we find that normal groups and (to a lesser extent) cluster outskirts present the highest values of both star forming fraction and LFR at low z, while fossil groups and cluster cores the lowest: this separation among groups begins after z~0.5, while earlier all group star forming properties are undistinguishable.Comment: revised version, A&A accepted (11 pages, 6 figures

    CHANTI: a Fast and Efficient Charged Particle Veto Detector for the NA62 Experiment at CERN

    Full text link
    The design, construction and test of a charged particle detector made of scintillation counters read by Silicon Photomultipliers (SiPM) is described. The detector, which operates in vacuum and is used as a veto counter in the NA62 experiment at CERN, has a single channel time resolution of 1.14 ns, a spatial resolution of ~2.5 mm and an efficiency very close to 1 for penetrating charged particles

    ANALYTICAL AND NUMERICAL MODELS FOR THE AERODYNAMIC NOISE PREDICTION OF AN HIGH-SPEED TRAIN PANTOGRAPH

    Get PDF
    The present work deals with the aeroacoustic analysis of a three-dimensional pantograph model, through the employment of an innovative analytical approach and a 3D numerical modeling. Specifically, the proposed analytical approach, aimed to predict the noise emission, is based on a modified formulation of the Smith and Chow's formula. Namely, by considering the entire landing gear structure as a sum of cylindrical elements, each cylinder noise has been individually calculated by the formula, as a result, based on the superposition principle, the whole noise is obtained; considering that the pantograph can also be considered as a sum of cylindrical elements, this formula, initially developed for aircraft landing gears, has been optimized and calibrated for the purpose of the present study. Because of, the analytical formula does not take obviously into account several effects related to the noise generation mechanism, a 3D numerical aeroacoustic model of the pantograph was needed. Specifically, the theoretical background adopted is the Williams and Hawkings acoustic analogy, an evolution of the well-known Lighthill acoustic analogy. The latter consists in the substitution of the noise generating surface with a distribution of dipole punctual sound sources, whose intensity is proportional to the temporal variation of fluid dynamic quantities acting in that point. As a result, a more detailed characterization of the noise spectrum can be provided. The analytical and numerical results have been then compared in terms of sound pressure levels and a well spectral contents, to themselves and to available experimental data
    corecore