186 research outputs found
Plus-minus construction leads to perfect invisibility
Recent theoretical advances applied to metamaterials have opened new avenues
to design a coating that hides objects from electromagnetic radiation and even
the sight. Here, we propose a new design of cloaking devices that creates
perfect invisibility in isotropic media. A combination of positive and negative
refractive indices, called plus-minus construction, is essential to achieve
perfect invisibility (i.e., no time delay and total absence of reflection).
Contrary to the common understanding that between two isotropic materials
having different refractive indices the electromagnetic reflection is
unavoidable, our method shows that surprisingly the reflection phenomena can be
completely eliminated. The invented method, different from the classical
impedance matching, may also find electromagnetic applications outside of
cloaking devices, wherever distortions are present arising from reflections.Comment: 24 pages, 10 figure
Experimental and theoretical study of free-free electron-helium scattering in a CO2 laser field
International audienceFree-free transitions during the scattering of electrons by helium in the presence of a linearly polarized CO2 laser field are investigated both experimentally and theoretically. Signals for laser-assisted scattering at 22 eV with absorption or emission of up to two photons are measured at scattering angles between 20° and 70°, and are compared to the values obtained from an 11-state R-matrix Floquet calculation and from the low-frequency approximation of Kroll and Watson. The two sets of theoretical results are found to be in very good agreement for the scattering geometries considered in the experiment. The order of magnitude of the experimental results is reproduced by calculations with intensities in the region of 107 W cm-2. Agreement is improved by averaging the theoretical results over the spatial distributions of the three beams as well as the temporal intensity profile of the laser pulse, and by allowing for some misalignment of the three beams in the experiment
Hydrodynamic object recognition using pressure sensing
Hydrodynamic sensing is instrumental to fish and some amphibians. It also represents, for underwater vehicles, an alternative way of sensing the fluid environment when visual and acoustic sensing are limited. To assess the effectiveness of hydrodynamic sensing and gain insight into its capabilities and limitations, we investigated the forward and inverse problem of detection and identification, using the hydrodynamic pressure in the neighbourhood, of a stationary obstacle described using a general shape representation. Based on conformal mapping and a general normalization procedure, our obstacle representation accounts for all specific features of progressive perceptual hydrodynamic imaging reported experimentally. Size, location and shape are encoded separately. The shape representation rests upon an asymptotic series which embodies the progressive character of hydrodynamic imaging through pressure sensing. A dynamic filtering method is used to invert noisy nonlinear pressure signals for the shape parameters. The results highlight the dependence of the sensitivity of hydrodynamic sensing not only on the relative distance to the disturbance but also its bearing
Rotationally induced Penning ionization of ultracold photoassociated helium dimers
We have studied photoassociation of metastable \tripS helium atoms near the
\tripS-\tripP asymptote by both ion detection in a magneto-optical trap and
trap-loss measurements in a magnetic trap. A detailed comparison between the
results of the two experiments gives insight into the mechanism of the Penning
ionization process. We have identified four series of resonances corresponding
to vibrational molecular levels belonging to different rotational states in two
potentials. The corresponding spin states become quasi-purely quintet at small
interatomic distance, and Penning ionization is inhibited by spin conservation
rules. Only a weak rotational coupling is responsible for the contamination by
singlet spin states leading to a detectable ion signal. However, for one of
these series Bose statistics does not enable the rotational coupling and the
series detected through trap-loss does not give rise to sufficient ionization
for detection.Comment: 7 pages, 4 figures, submitted to EuroPhysics Letter
Fake R^4's, Einstein Spaces and Seiberg-Witten Monopole Equations
We discuss the possible relevance of some recent mathematical results and
techniques on four-manifolds to physics. We first suggest that the existence of
uncountably many R^4's with non-equivalent smooth structures, a mathematical
phenomenon unique to four dimensions, may be responsible for the observed
four-dimensionality of spacetime. We then point out the remarkable fact that
self-dual gauge fields and Weyl spinors can live on a manifold of Euclidean
signature without affecting the metric. As a specific example, we consider
solutions of the Seiberg-Witten Monopole Equations in which the U(1) fields are
covariantly constant, the monopole Weyl spinor has only a single constant
component, and the 4-manifold M_4 is a product of two Riemann surfaces
Sigma_{p_1} and Sigma_{p_2}. There are p_{1}-1(p_{2}-1) magnetic(electric)
vortices on \Sigma_{p_1}(\Sigma_{p_2}), with p_1 + p_2 \geq 2 (p_1=p_2= 1 being
excluded). When the two genuses are equal, the electromagnetic fields are
self-dual and one obtains the Einstein space \Sigma_p x \Sigma_p, the monopole
condensate serving as the cosmological constant.Comment: 9 pages, Talk at the Second Gursey Memorial Conference, June 2000,
Istanbu
On the Role of Penning Ionization in Photoassociation Spectroscopy
We study the role of Penning ionization on the photoassociation spectra of
He(^3S)-He(^3S). The experimental setup is discussed and experimental results
for different intensities of the probe laser are shown. For modelling the
experimental results we consider coupled-channel calculations of the crossing
of the ground state with the excited state at the Condon point. The
coupled-channel calculations are first applied to model systems, where we
consider two coupled channels without ionization, two coupled channels with
ionization, and three coupled channels, for which only one of the excited
states is ionizing. Finally, coupled-channel calculations are applied to
photoassociation of He(^3S)-He(^3S) and good agreement is obtained between the
model and the experimental results.Comment: 14 pages, 18 figures, submitted to the special issue on Cold
Molecules of J. Phys.
Zeros of the i.i.d. Gaussian power series: a conformally invariant determinantal process
Consider the zero set of the random power series f(z)=sum a_n z^n with i.i.d.
complex Gaussian coefficients a_n. We show that these zeros form a
determinantal process: more precisely, their joint intensity can be written as
a minor of the Bergman kernel. We show that the number of zeros of f in a disk
of radius r about the origin has the same distribution as the sum of
independent {0,1}-valued random variables X_k, where P(X_k=1)=r^{2k}. Moreover,
the set of absolute values of the zeros of f has the same distribution as the
set {U_k^{1/2k}} where the U_k are i.i.d. random variables uniform in [0,1].
The repulsion between zeros can be studied via a dynamic version where the
coefficients perform Brownian motion; we show that this dynamics is conformally
invariant.Comment: 37 pages, 2 figures, updated proof
Notes on Conformal Invisibility Devices
As a consequence of the wave nature of light, invisibility devices based on
isotropic media cannot be perfect. The principal distortions of invisibility
are due to reflections and time delays. Reflections can be made exponentially
small for devices that are large in comparison with the wavelength of light.
Time delays are unavoidable and will result in wave-front dislocations. This
paper considers invisibility devices based on optical conformal mapping. The
paper shows that the time delays do not depend on the directions and impact
parameters of incident light rays, although the refractive-index profile of any
conformal invisibility device is necessarily asymmetric. The distortions of
images are thus uniform, which reduces the risk of detection. The paper also
shows how the ideas of invisibility devices are connected to the transmutation
of force, the stereographic projection and Escheresque tilings of the plane
Lambda<0 Quantum Gravity in 2+1 Dimensions II: Black Hole Creation by Point Particles
Using the recently proposed formalism for Lambda<0 quantum gravity in 2+1
dimensions we study the process of black hole production in a collision of two
point particles. The creation probability for a BH with a simplest topology
inside the horizon is given by the Liouville theory 4-point function projected
on an intermediate state. We analyze in detail the semi-classical limit of
small AdS curvatures, in which the probability is dominated by the exponential
of the classical Liouville action. The probability is found to be exponentially
small. We then argue that the total probability of creating a horizon given by
the sum of probabilities of all possible internal topologies is of order unity,
so that there is no exponential suppression of the total production rate.Comment: v1: 30+1 pages, figures, v2: 34+1 pages, agruments straightened ou
The Schwarzian derivative and the Wiman-Valiron property
Consider a transcendental meromorphic function in the plane with finitely many critical values, such that the multiple points have bounded multiplicities and the inverse function has finitely many transcendental singularities. Using the Wiman-Valiron method it is shown that if the Schwarzian derivative is transcendental then the function has infinitely many multiple points, the inverse function does not have a direct transcendental singularity over infinity, and infinity is not a Borel exceptional value. The first of these conclusions was proved by Nevanlinna and Elfving via a fundamentally different method
- …
