534 research outputs found
Stoichiometry, structure, and transport in the quasi-one-dimensional metal, Li(0.9)Mo(6)O(17)
A correlation between lattice parameters, oxygen composition, and the
thermoelectric and Hall coefficients is presented for single-crystal
Li(0.9)Mo(6)O(17), a quasi-one-dimensional (Q1D) metallic compound. The
possibility that this compound is a compensated metal is discussed in light of
a substantial variability observed in the literature for these transport
coefficients.Comment: 5 pages, 4 Figures; Phys. Rev. B (in press
Inhomogeneous magnetism in La-doped CaMnO3. (I) Nanometric-scale spin clusters and long-range spin canting
Neutron measurements on Ca{1-x}La{x}MnO3 (0.00 <= x <= 0.20) reveal the
development of a liquid-like spatial distribution of magnetic droplets of
average size ~10 Angstroms, the concentration of which is proportional to x
(one cluster per ~60 doped electrons). In addition, a long-range ordered
ferromagnetic component is observed for ~0.05 < x < ~0.14. This component is
perpendicularly coupled to the simple G-type antiferromagnetic (G-AFM)
structure of the undoped compound, which is a signature of a G-AFM + FM
spin-canted state. The possible relationship between cluster formation and the
stabilization of a long-range spin-canting for intermediate doping is
discussed.Comment: Submitted to Physical Review
Negative thermal expansion of MgB in the superconducting state and anomalous behavior of the bulk Gr\"uneisen function
The thermal expansion coefficient of MgB is revealed to change
from positive to negative on cooling through the superconducting transition
temperature . The Gr\"uneisen function also becomes negative at
followed by a dramatic increase to large positive values at low temperature.
The results suggest anomalous coupling between superconducting electrons and
low-energy phonons.Comment: 5 figures. submitted to Phys. Rev. Let
Inhomogeneous Magnetism in La-doped CaMnO3. (II) Mesoscopic Phase Separation due to Lattice-coupled FM Interactions
A detailed investigation of mesoscopic magnetic and crystallographic phase
separation in Ca(1-x)La(x)MnO3, 0.00<=x<=0.20, is reported. Neutron powder
diffraction and DC-magnetization techniques have been used to isolate the
different roles played by electrons doped into the eg level as a function of
their concentration x. The presence of multiple low-temperature magnetic and
crystallographic phases within individual polycrystalline samples is argued to
be an intrinsic feature of the system that follows from the shifting balance
between competing FM and AFM interactions as a function of temperature. FM
double-exchange interactions associated with doped eg electrons are favored
over competing AFM interactions at higher temperatures, and couple more
strongly with the lattice via orbital polarization. These FM interactions
thereby play a privileged role, even at low eg electron concentrations, by
virtue of structural modifications induced above the AFM transition
temperatures.Comment: 8 pages, 7 figure
The enhancement of phase separation aspect in electron doped manganite Ca0.8Sm0.16Nd0.04MnO3
The complex lanthanide doping of electron manganites results in enhancement
of various phase separation effects in physical properties of these compounds.
Selecting Ca0.8Sm0.16Nd0.04MnO3 as a model case we show that the first order
structural phase transition from paramagnetic semi-metallic phase into
anti-ferromagnetic semi-metallic phase at TS ~ 158 +- 4 K is marked by an
abrupt decrease in magnetization, a step like anomaly DL/L = 10-4 in thermal
expansion and large latent heat DQ = 610 J/mol. In a certain temperature range
below TS, the high field magnetization exhibits hysteretic metamagnetic
behavior due to field-induced first order transformation. ac-susceptibility,
magnetization and resistivity data suggest rather a non-uniform state in
Ca0.8Sm0.16Nd0.04MnO3 at low temperatures. The metal - insulator transition
occurs at TMI ~112 +- 3 K, accompanied by a step-like increase in
magnetization. These features could be ascribed to "sponging" of electrons from
neighboring anti-ferromagnetic matrix by clusters undergoing the ferromagnetic
ordering.Comment: submitted to J.Phys. Cond. Matte
Optimizing trade-offs among stakeholders in real-time bidding by incorporating multimedia metrics
Displaying banner advertisements (in short, ads) on webpages has usually been discussed as an Internet economics topic where a publisher uses auction models to sell an online user's page view to advertisers and the one with the highest bid can have her ad displayed to the user. This is also called \emph{real-time bidding} (RTB) and the ad displaying process ensures that the publisher's benefit is maximized or there is an equilibrium in ad auctions. However, the benefits of the other two stakeholders -- the advertiser and the user -- have been rarely discussed. In this paper, we propose a two-stage computational framework that selects a banner ad based on the optimized trade-offs among all stakeholders. The first stage is still auction based and the second stage re-ranks ads by considering the benefits of all stakeholders. Our metric variables are: the publisher's revenue, the advertiser's utility, the ad memorability, the ad click-through rate (CTR), the contextual relevance, and the visual saliency. To the best of our knowledge, this is the first work that optimizes trade-offs among all stakeholders in RTB by incorporating multimedia metrics. An algorithm is also proposed to determine the optimal weights of the metric variables. We use both ad auction datasets and multimedia datasets to validate the proposed framework. Our experimental results show that the publisher can significantly improve the other stakeholders' benefits by slightly reducing her revenue in the short-term. In the long run, advertisers and users will be more engaged, the increased demand of advertising and the increased supply of page views can then boost the publisher's revenue
High Temperature Thermopower in La_{2/3}Ca_{1/3}MnO_3 Films: Evidence for Polaronic Transport
Thermoelectric power, electrical resistivity and magnetization experiments,
performed in the paramagnetic phase of La_{2/3}Ca_{1/3}MnO_3, provide evidence
for polaron-dominated conduction in CMR materials. At high temperatures, a
large, nearly field-independent difference between the activation energies for
resistivity (rho) and thermopower (S), a characteristic of Holstein Polarons,
is observed, and ln(rho) ceases to scale with the magnetization. On approaching
T_c, both energies become field-dependent, indicating that the polarons are
magnetically polarized. Below T_c, the thermopower follows a law S(H) prop.
1/rho (H) as in non saturated ferromagnetic metals.Comment: 10 pages, 5 .gif figures. Phys. Rev B (in press
- …
