1,121 research outputs found
Palynology, vegetation and climate of the Waikato lowlands, North Island, New Zealand, since c. 18,000 years ago
The vegetational and climatic history of the Waikato lowlands during the last c. 18,000 years is inferred from the palynology of sediment cores from Lakes Rotomanuka, Rotokauri, and Okoroire. Intra- and inter-lake correlations were aided by multiple tephra layers interbedded with the lake sediments. The detailed chronological resolution given by these tephra sequences shows that late glacial-post glacial vegetational and climatic changes were nearly simultaneous throughout the Waikato lowlands
Materials Contrast in Piezoresponse Force Microscopy
Piezoresponse Force Microscopy contrast in transversally isotropic material
corresponding to the case of c+ - c- domains in tetragonal ferroelectrics is
analyzed using Green's function theory by Felten et al. [J. Appl. Phys. 96, 563
(2004)]. A simplified expression for PFM signal as a linear combination of
relevant piezoelectric constant are obtained. This analysis is extended to
piezoelectric material of arbitrary symmetry with weak elastic and dielectric
anisotropies. This result provides a framework for interpretation of PFM
signals for systems with unknown or poorly known local elastic and dielectric
properties, including nanocrystalline materials, ferroelectric polymers, and
biopolymers.Comment: 20 pages, 3 figures, 1 table, accepted to Appl. Phys. Lett. (without
Appendices), algebraic errors were correcte
Magnetodielectric coupling in Mn3O4
We have investigated the dielectric anomalies associated with spin ordering
transitions in the tetragonal spinel MnO, using thermodynamic,
magnetic, and dielectric measurements. We find that two of the three magnetic
ordering transitions in MnO lead to decreases in the temperature
dependent dielectric constant at zero applied field. Applying a magnetic field
to the polycrystalline sample leaves these two dielectric anomalies practically
unchanged, but leads to an increase in the dielectric constant at the
intermediate spin-ordering transition. We discuss possible origins for this
magnetodielectric behavior in terms of spin-phonon coupling. Band structure
calculations suggest that in its ferrimagnetic state, MnO corresponds
to a semiconductor with no orbital degeneracy due to strong Jahn-Teller
distortion.Comment: 6 pages, 7 figure
The effect of energetic electron precipitation on middle mesospheric night-time ozone during and after a moderate geomagnetic storm
Using a ground-based microwave radiometer at Troll Station, Antarctica (72°S, 2.5°E, L = 4.76), we have observed a decrease of 20–70% in the mesospheric ozone, coincident with increased nitric oxide, between 60 km and 75 km altitude associated with energetic electron precipitation (E > 30 keV) during a moderate geomagnetic storm (minimum Dst of −79 nT) in late July 2009. NOAA satellite data were used to identify the precipitating particles and to characterize their energy, spatial distribution and temporal variation over Antarctica during this isolated storm. Both the ozone decrease and nitric oxide increase initiate with the onset of the storm, and persist for several days after the precipitation ends, descending in the downward flow of the polar vortex. These combined data present a unique case study of the temporal and spatial morphology of chemical changes induced by electron precipitation during moderate geomagnetic storms, indicating that these commonplace events can cause significant effects on the middle mesospheric ozone distribution
Atmospheric effects of radiation belt precipitation over Antarctica
第3回極域科学シンポジウム 横断セッション「中層大気・熱圏」 11月26日(月) 国立極地研究所 2階大会議
Late Holocene palynology and palaeovegetation of tephra-bearing mires at Papamoa and Waihi Beach, western Bay of Plenty, North Island, New Zealand.
The vegetation history of two mires associated with Holocene dunes near the western Bay of Plenty coast, North Island, New Zealand, is deduced from pollen analysis of two cores. Correlation of airfall tephra layers in the peats, and radiocarbon dates, indicate that the mires at Papamoa and Waihi Beach are c. 4600 and c. 2900 conventional radiocarbon years old, respectively. Tephras used to constrain the chronology of the pollen record include Rotomahana (1886 AD), Kaharoa (700 yr B.P.), Taupo (Unit Y; 1850 yr B.P.), Whakaipo (Unit V; 2700 yr B.P.), Stent (Unit Q; 4000 yr B.P.), Hinemaiaia (Unit K; 4600 yr B.P.), and reworked Whakatane (c. 4800 yr B.P.) at Papamoa, and Kaharoa and Taupo at Waihi Beach. Peat accumulation rates at Papamoa from 4600 - 1850 yr B.P. range from 0.94 to 2.64 mm/yr (mean 1.37 mm/yr). At Waihi Beach, from 2900 yr B.P. - present day, they range from 0.11 to 0.21 mm/yr (mean 0.20 mm/yr). Peat accumulation at both sites was slowest from 1850 to 700 yr B.P., suggesting a drier overall climate during this interval. At both sites, the earliest organic sediments, which are underlain by marine or estuarine sands, yield pollen spectra indicating salt marsh or estuarine environments. Coastal vegetation communities declined at both sites, as sea level gradually fell or the coast prograded, and were eventually superseded by a low moor bog at Papamoa, and a mesotrophic swamp forest at Waihi Beach. These differences, and the marked variation in peat accumulation rates, probably reflect local hydrology and are unlikely to have been climatically controlled. The main regional vegetation during this period was mixed northern conifer-angiosperm forest. Kauri (Agathis australis) formed a minor component of these forests, but populations of this tree have apparently not expanded during the late Holocene at these sites, which are near its present southern limit. Occasional shortlived forest disturbances are detectable in these records, in particular immediately following the deposition of Taupo Tephra. However, evidence for forest clearance during the human era is blurred by the downward dislocation of modern adventi ve pollen at these sites, preventing the clear differentiation of the Polynesian and European eras
Solution structure of a bacterial microcompartment targeting peptide and its application in the construction of an ethanol bioreactor
Targeting of proteins to bacterial microcompartments (BMCs) is mediated by an 18-amino-acid peptide sequence. Herein, we report the solution structure of the N-terminal targeting peptide (P18) of PduP, the aldehyde dehydrogenase associated with the 1,2-propanediol utilization metabolosome from Citrobacter freundii. The solution structure reveals the peptide to have a well-defined helical conformation along its whole length. Saturation transfer difference and transferred NOE NMR has highlighted the observed interaction surface on the peptide with its main interacting shell protein, PduK. By tagging both a pyruvate decarboxylase and an alcohol dehydrogenase with targeting peptides, it has been possible to direct these enzymes to empty BMCs in vivo and to generate an ethanol bioreactor. Not only are the purified, redesigned BMCs able to transform pyruvate into ethanol efficiently, but the strains containing the modified BMCs produce elevated levels of alcohol
Towards a microscopic theory of toroidal moments in bulk periodic crystals
We present a theoretical analysis of magnetic toroidal moments in periodic
systems, in the limit in which the toroidal moments are caused by a time and
space reversal symmetry breaking arrangement of localized magnetic dipole
moments. We summarize the basic definitions for finite systems and address the
question of how to generalize these definitions to the bulk periodic case. We
define the toroidization as the toroidal moment per unit cell volume, and we
show that periodic boundary conditions lead to a multivaluedness of the
toroidization, which suggests that only differences in toroidization are
meaningful observable quantities. Our analysis bears strong analogy to the
modern theory of electric polarization in bulk periodic systems, but we also
point out some important differences between the two cases. We then discuss the
instructive example of a one-dimensional chain of magnetic moments, and we show
how to properly calculate changes of the toroidization for this system.
Finally, we evaluate and discuss the toroidization (in the local dipole limit)
of four important example materials: BaNiF_4, LiCoPO_4, GaFeO_3, and BiFeO_3.Comment: replaced with final (published) version, which includes some changes
in the text to improve the clarity of presentatio
Macrofossils and pollen representing forests of the pre-Taupo volcanic eruption (c. 1850 yr BP) era at Pureora and Benneydale, central North Island, New Zealand.
Micro- and macrofossil data from the remains of forests overwhelmed and buried at Pureora and Benneydale during the Taupo eruption (c. 1850 conventional radiocarbon yr BP) were compared. Classification of relative abundance data separated the techniques, rather than the locations, because the two primary clusters comprised pollen and litter/wood. This indicates that the pollen:litter/wood within-site comparisons (Pureora and Benneydale are 20 km apart) are not reliable. Plant macrofossils represented mainly local vegetation, while pollen assemblages represented a combination of local and regional vegetation. However, using ranked abundance and presence/absence data, both macrofossils and pollen at Pureora and Benneydale indicated conifer/broadleaved forest, of similar forest type and species composition at each site. This suggests that the forests destroyed by the eruption were typical of mid-altitude west Taupo forests, and that either data set (pollen or macrofossils) would have been adequate for regional forest interpretation.
The representation of c. 1850 yr BP pollen from the known buried forest taxa was generally consistent with trends determined by modern comparisons between pollen and their source vegetation, but with a few exceptions.
A pollen profile from between the Mamaku Tephra (c. 7250 yr BP) and the Taupo Ignimbrite indicated that the Benneydale forest had been markedly different in species dominance compared with the forest that was destroyed during the Taupo eruption. These differences probably reflect changes in drainage, and improvements in climate and/or soil fertility over the middle Holocene
Scaled free energies, power-law potentials, strain pseudospins and quasi-universality for first-order structural transitions
We consider ferroelastic first-order phase transitions with
order-parameter strains entering Landau free energies as invariant polynomials,
that have structural-variant Landau minima. The total free energy
includes (seemingly innocuous) harmonic terms, in the {\it
non}-order-parameter strains. Four 3D transitions are considered,
tetragonal/orthorhombic, cubic/tetragonal, cubic/trigonal and
cubic/orthorhombic unit-cell distortions, with respectively, and 2; and and 6. Five 2D transitions are also considered, as
simpler examples. Following Barsch and Krumhansl, we scale the free energy to
absorb most material-dependent elastic coefficients into an overall prefactor,
by scaling in an overall elastic energy density; a dimensionless temperature
variable; and the spontaneous-strain magnitude at transition .
To leading order in the scaled Landau minima become
material-independent, in a kind of 'quasi-universality'. The scaled minima in
-dimensional order-parameter space, fall at the centre and at the
corners, of a transition-specific polyhedron inscribed in a sphere, whose
radius is unity at transition. The `polyhedra' for the four 3D transitions are
respectively, a line, a triangle, a tetrahedron, and a hexagon. We minimize the
terms harmonic in the non-order-parameter strains, by substituting
solutions of the 'no dislocation' St Venant compatibility constraints, and
explicitly obtain powerlaw anisotropic, order-parameter interactions, for all
transitions. In a reduced discrete-variable description, the competing minima
of the Landau free energies induce unit-magnitude pseudospin vectors, with values, pointing to the polyhedra corners and the (zero-value) center.Comment: submitted to PR
- …
