63 research outputs found
TESS hunt for young and maturing exoplanets (THYME). III. A two-planet system in the 400 Myr Ursa major group
A.W.M. was supported through NASA's Astrophysics Data Analysis Program (80NSSC19K0583). M.L.W. was supported by a grant through NASA's K2 GO program (80NSSC19K0097). This material is based on work supported by the National Science Foundation Graduate Research Fellowship Program under grant No. DGE-1650116 to P.C.T. A.V.'s work was performed under contract with the California Institute of Technology/Jet Propulsion Laboratory funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute. D.D. acknowledges support from NASA through Caltech/JPL grant RSA-1006130 and through the TESS Guest Investigator Program grant 80NSSC19K1727.Exoplanets can evolve significantly between birth and maturity, as their atmospheres, orbits, and structures are shaped by their environment. Young planets (<1 Gyr) offer an opportunity to probe the critical early stages of this evolution, where planets evolve the fastest. However, most of the known young planets orbit prohibitively faint stars. We present the discovery of two planets transiting HD 63433 (TOI 1726, TIC 130181866), a young Sun-like (M∗=0.99±0.03) star. Through kinematics, lithium abundance, and rotation, we confirm that HD 63433 is a member of the Ursa Major moving group (τ=414±23 Myr). Based on the TESS light curve and updated stellar parameters, we estimate the planet radii are 2.15±0.10R⊕ and 2.67±0.12R⊕, the orbital periods are 7.11 and 20.55 days, and the orbital eccentricities are lower than about 0.2. Using HARPS-N velocities, we measure the Rossiter-McLaughlin signal of the inner planet, demonstrating that the orbit is prograde. Since the host star is bright (V=6.9), both planets are amenable to transmission spectroscopy, radial velocity measurements of their masses, and more precise determination of the stellar obliquity. This system is therefore poised to play an important role in our understanding of planetary system evolution in the first billion years after formation.PostprintPeer reviewe
The descriptive epidemiology of DSM-IV Adult ADHD in the World Health Organization World Mental Health Surveys
We previously reported on the cross-national epidemiology of ADHD from the first 10 countries in the WHO World Mental Health (WMH) Surveys. The current report expands those previous findings to the 20 nationally or regionally representative WMH surveys that have now collected data on adult ADHD. The Composite International Diagnostic Interview (CIDI) was administered to 26,744 respondents in these surveys in high-, upper-middle-, and low-/lower-middle-income countries (68.5% mean response rate). Current DSM-IV/CIDI adult ADHD prevalence averaged 2.8% across surveys and was higher in high (3.6%)- and upper-middle (3.0%)- than low-/lower-middle (1.4%)-income countries. Conditional prevalence of current ADHD averaged 57.0% among childhood cases and 41.1% among childhood subthreshold cases. Adult ADHD was significantly related to being male, previously married, and low education. Adult ADHD was highly comorbid with DSM-IV/CIDI anxiety, mood, behavior, and substance disorders and significantly associated with role impairments (days out of role, impaired cognition, and social interactions) when controlling for comorbidities. Treatment seeking was low in all countries and targeted largely to comorbid conditions rather than to ADHD. These results show that adult ADHD is prevalent, seriously impairing, and highly comorbid but vastly under-recognized and undertreated across countries and cultures
Solid-State Characterization and Photoinduced Intramolecular Electron Transfer in a Nanoconfined Octacationic Homo[2]Catenane
Numerical Simulation of Convective Instabilities in a Liquid Layer Submitted to an Inclined Gradient of Temperature
AbstractIn this paper, numerical results of convective instabilities in a horizontal liquid layer, with an upper free surface, are presented. The liquid layer has been submitted to an inclined gradient of temperature (i.e. a horizontal gradient of temperature superimposed to a vertical one). Silicone oil with a Prandtl number Pr = 102 has been used as a working liquid. The thickness of the liquid layer has been varied from 1.7mm to 3.2mm to study the influence of both gravity and surface tension effects on the formation of convective patterns. 3D numerical simulations have been carried out using “Gambit” as a mesh generator and the numerical code “Fluent”, which is based on the finite volume method. The obtained results have been compared to experimental results of other authors and a good agreement has been achieved. This fact allows validating our modelling and numerical simulation procedure
Computational analysis of convective instabilities in a liquid layer subjected to an inclined gradient of temperature
Bigtools: a high-performance BigWig and BigBed library in Rust [preprint]
This article is a preprint. Preprints are preliminary reports of work that have not been certified by peer review.The BigWig and BigBed file formats were originally designed for the visualization of next-generation sequencing data through a genome browser. Due to their versatility, these formats have long since become ubiquitous for the storage of processed sequencing data and regularly serve as the basis for downstream data analysis. As the number and size of sequencing experiments continues to accelerate, there is an increasing demand to efficiently generate and query BigWig and BigBed files in a scalable and robust manner, and to efficiently integrate these functionalities into data analysis environments and third-party applications. Here, we present Bigtools, a feature-complete, high-performance, and integrable software library for generating and querying both BigWig and BigBed files. Bigtools is written in the Rust programming language and includes a flexible suite of command line tools as well as bindings to Python. Bigtools is cross-platform and released under the MIT license. It is distributed on Crates.io and the Python Package Index, and the source code is available at https://github.com/jackh726/bigtools
Bigtools: a high-performance BigWig and BigBed library in Rust
Motivation: The BigWig and BigBed file formats were originally designed for the visualization of next-generation sequencing data through a genome browser. Due to their versatility, these formats have long since become ubiquitous for the storage of processed sequencing data and regularly serve as the basis for downstream data analysis. As the number and size of sequencing experiments continues to accelerate, there is an increasing demand to efficiently generate and query BigWig and BigBed files in a scalable and robust manner, and to efficiently integrate these functionalities into data analysis environments and third-party applications.
Results: Here, we present Bigtools, a feature-complete, high-performance, and integrable software library for generating and querying both BigWig and BigBed files. Bigtools is written in the Rust programming language and includes a flexible suite of command line tools as well as bindings to Python.
Availability and implementation: Bigtools is cross-platform and released under the MIT license. It is distributed on Crates.io, Bioconda, and the Python Package Index, and the source code is available at https://github.com/jackh726/bigtools
Pseudo-Gaussian and rank-based optimal tests for random individual effects in large n small T panels
We consider the problem of detecting unobserved heterogeneity, that is, the problem of testing the absence of random individual effects in an n -T panel. We establish a local asymptotic normality property-with respect to intercept, regression coefficient, the scale parameter of the error, and the scale parameter u of individual effects (which is the parameter of interest)-for given (scaled) density f 1 of the error terms, when n tends to infinity and T is fixed. This result allows, via the Hk representation theorem, for developing asymptotically optimal rank-based tests for the null hypothesis u = 0 (absence of individual effects). These tests are locally asymptotically optimal at correctly specified innovation densities f 1, but remain valid irrespective of the actual underlying density. The limiting distribution of our test statistics is obtained both under the null and under sequences of contiguous alternatives. A local asymptotic linearity property is established in order to control for the effect of substituting estimators for nuisance parameters. The asymptotic relative efficiencies of the proposed procedures with respect to the corresponding pseudo-Gaussian parametric tests are derived. In particular, the van der Waerden version of our rank-based tests uniformly dominates, from the point of view of Pitman efficiency, the classical Honda test. Small-sample performances are investigated via a Monte-Carlo study, and confirm theoretical findings
First outcomes of silicon rod frontalis suspension prospective follow-up in congenital blepharoptosis
- …
